cho parabol (P): y=1/2x^2 và đường thăng (a): y=-2x +1
xác định đường thẳng (d) biết đường thẳng (d) song song với đường thẳng (a) và cắt parabol tại điểm có hoành độ bằng -2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì (d) song song với đường thẳng \(y=-2x+2003\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne2003\end{matrix}\right.\)
\(\Rightarrow\left(d\right):y=-2x+b\)
Vì (d) cắt trục hoành tại điểm có hoành độ = 1
\(\Rightarrow\) tọa độ điểm đó là \(\left(1;0\right)\)
\(\Rightarrow1=b\Rightarrow\left(d\right):y=-2x+1\)
b) pt hoành độ giao điểm: \(-\dfrac{1}{2}x^2=-2x+2\Rightarrow\dfrac{1}{2}x^2-2x+2=0\)
\(\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\Rightarrow y=-\dfrac{1}{2}.2^2=-2\)
\(\Rightarrow\) tọa độ giao điểm là \(\left(2;-2\right)\)
đường thẳng y = ax+ b song song với đường thằng y = -x+ 5
=> a = -1 ; b khác 5
=> đường thẳng có dạng y = -x + b
gọi A là giao của đg thẳng y = -x + b và parabol
=> xA = 1 => yA = xA2 = 1
A(1; 1) thuộc đg thẳng y = -x + b => yA = - xA + b =>b = 2 (thoả mãn)
\(\left(d\right):y=ax+b//y=-\dfrac{1}{2}x+3\Leftrightarrow a=-\dfrac{1}{2}\left(1\right)\)
(d) cắt trục hoành tai điểm có hoành độ 2
\(\Leftrightarrow y=0;x=2\Leftrightarrow2a+b=0\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=1\end{matrix}\right.\)
Vậy đths là \(y=-\dfrac{1}{2}x+1\)
Vì (d)//y=-1/2x+3 nên \(a=-\dfrac{1}{2}\)
Thay x=2 và y=0 vào (d), ta được:
\(b+\dfrac{-1}{2}\cdot2=0\)
hay b=1
Vì (d1)//(d) nên \(\left\{{}\begin{matrix}a=3\\b\ne-4\end{matrix}\right.\)
Vậy: (d1): y=3x+b
Thay x=-2 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)
Thay x=-2 và y=2 vào (d1), ta được:
\(3\cdot\left(-2\right)+b=2\)
\(\Leftrightarrow b=8\)(thỏa ĐK)
Vậy: (d1): y=3x+8
để \(\left(d1\right)\) sogn song với \(\left(d\right)\)
\(< =>\left\{{}\begin{matrix}a=3\\b\ne-4\end{matrix}\right.\)
để (d1) cắt (P) tại A có hoành độ -2\(=>x=-2\)
\(=>\dfrac{1}{2}x^2=3x+b< =>\dfrac{1}{2}\left(-2\right)^2=3\left(-2\right)+b=>b=8\left(tm\right)\)
=>\(\left(d1\right):y=3x+8\)
1.
\(A=\frac{4\left(\sqrt{3}+1\right)}{3-1}-\frac{2\left(\sqrt{2}-\sqrt{3}\right)}{2-3}-\sqrt{8}\)
\(A=\frac{4\left(\sqrt{3}+1\right)}{2}-\frac{2\sqrt{2}-2\sqrt{3}}{-1}-2\sqrt{2}\)
\(A=2\left(\sqrt{3}+1\right)+2\sqrt{2}-2\sqrt{3}-2\sqrt{2}\)
\(A=2\sqrt{3}+2-2\sqrt{3}\)
\(A=2\)
2. Đặt (D): y = ax + b (a khác 0)
(D1): y = -3x + 5
- Vì (D) // (D1): y = -3x+5 \(\Rightarrow\hept{\begin{cases}a=-3\\b\ne5\end{cases}}\)
- Vì (D) cắt (P): y = 2x^2 tại điểm A có hoành độ là -1 \(\Rightarrow x=-1\)
Thay x = -1 vào: y = 2x^2 = 2.(-1)^2 = \(2\)
Thay \(a=-3;x=-1;y=2\)vào:
\(ax+b=y\)
\(\Leftrightarrow-3.\left(-1\right)+b=2\)
\(\Leftrightarrow3+b=2\)
\(\Leftrightarrow b=-1\left(TMĐK\right)\)
Vậy: \(\left(D\right):y=-3x-1\)