K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

m/n=1+1/2+1/3+1/4+1/5+1/6

m/n=(1+1/6)+(1/2+1/5)+(1/3+1/4)

m/n=7/6+7/5+7/4

m/n=7x(1/6+1/5+1/4)

m/n=7x(4x5/4x5x6 + 4x6/4x5x6 + 5x6/4x5x6)

m/n=7x(4x5+4x6+5x6/4x5x6)

Vì 7 là số nguyên tố mà tích 4x5x6 ko chứa thừa số nguyên tố 7 nên đến khi rút gọn thì m vẫn chia hết cho 7.

tích nha Thanh Thảo Michiko_BGSnhóm nữ năng động
 

26 tháng 5 2016

m/n=1+1/2+1/3+1/4+1/5+1/6

m/n=(1+1/6)+(1/2+1/5)+(1/3+1/4)

m/n=7/6+7/5+7/4

m/n=7x(1/6+1/5+1/4)

m/n=7x(4x5/4x5x6 + 4x6/4x5x6 + 5x6/4x5x6)

m/n=7x(4x5+4x6+5x6/4x5x6)

Vì 7 là số nguyên tố mà tích 4x5x6 ko chứa thừa số nguyên tố 7 nên đến khi rút gọn thì m vẫn chia hết cho 7.
 

26 tháng 1 2017

\(\frac{m}{p}=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{p-1}\)

\(\frac{m}{p}=\left(1+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+....+\left(1+\frac{1}{\left(p-1\right):2}\right)+\left(1+\frac{1}{\left(p-2\right):2}\right)\)

\(\frac{m}{n}=p\left(\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+........+\frac{1}{\left[\left(p-1\right):2\right].\left[\left(p-1\right):2+1\right]}\right)\)

MC:1.2.3....(p-1)

Gọi các thừa số phụ lần lượt là \(k_1;k_2;k_3;.....;k_{p-1}\)

Khi đó: \(\frac{m}{n}=\frac{p.\left(k_1+k_2+k_3+....+k_{\left(p-1\right)}\right)}{1.2.3....\left(p-1\right)}\)

Do p là nguyên tố lớn hơn 2 mà mẫu không chứa thừa số p nên đến khi rút gọn tử số vẫn chứa thừa số nguyên tố p

\(\Rightarrow\)m chia hết cho p (đpcm)

5 tháng 12 2015

đúng là ko có bài nào dễ trong ngày hôm nay

5 tháng 12 2015

Bạn ghi nhỏ lại nhé. Hơn nũa bạn nên tách riêng từng câu hỏi, làm vầy nhiều lắm

19 tháng 1 2019

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{200^2}+\frac{1}{200^2}+...+\frac{1}{200^2}\left(100\text{số hạng}\right)\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{100}{200^2}< \frac{100}{200}=\frac{1}{2}\)

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{2}\left(đpcm\right)\)

20 tháng 1 2019

bài tớ sai rồi -_-' chưa lại hộ

\(=\frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{1.2}+...+\frac{1}{99.100}\right)\)

\(=\frac{1}{2^2}.\left(1+1-\frac{1}{100}\right)=\frac{1}{4}.2-\frac{1}{400}=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)

13 tháng 6 2018

\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1996}+\frac{1}{1997}+\frac{1}{1998}=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+\left(\frac{1}{3}+\frac{1}{1996}\right)+...+\left(\frac{1}{999}+\frac{1}{1000}\right)\)

\(=\frac{1999}{1998}+\frac{1999}{2.1997}+\frac{1999}{3.1996}+...+\frac{1999}{999.1000}=1999.\left(\frac{1}{1998}+\frac{1}{2.1997}+...+\frac{1}{999.1000}\right)⋮1999\)

\(\Rightarrow\frac{m}{n}⋮1999\Rightarrow m⋮1999\)

BTTQ: Nếu \(\frac{m}{n}=1+\frac{1}{2}+...+\frac{1}{k}\left(k\inℕ^∗\right)\)thì m\(⋮\left(k+1\right)\)

13 tháng 6 2018

Ta có : \(\frac{m}{n}\)\(1+\frac{1}{2}+...+\frac{1}{1998}\)

= ( 1 + 1/1998 ) + ( 1/2 + 1/1997 ) + ... + ( 1/99 + 1/1000 )

\(\frac{1999}{1998}+\frac{1999}{2.1997}+...+\frac{1999}{999.1000}\)

\(\frac{1999.\left(a_1+a_2+...+a_{1999}\right)}{1.2.3....1998}\)( a1 ; a2 ; ... là các thừa số phụ tương ứng của các phân số )

\(\frac{1999.\left(a_1+a_2+...+a_{1999}\right)}{1.2.3....1998}\)=> tử \(⋮\)1999

Vì 1999 là số nguyên tố mà n k có thừa số 1999 =>  n ko chia hết cho 1999 . Dù rút gọn về phân số tối giản thì tử \(⋮\)1999 hay m \(⋮\)1999

Do đó dạng tổng quát là : 

m/n = 1 + 1/2 + 1/3 + ... + 1/k => m \(⋮\)k ( k thuộc N* )