K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2015

cho tớ mỗi dấu cộng là 1 ví dụ nhé .tớ chưa hiểu lém 

14 tháng 8 2016

(1-2m)2 - 4m(m-2) >0

1-4m +4m2-4m2 +8m >0

4m +1 >0

m > -1/4

14 tháng 8 2016

với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?

14 tháng 8 2016

Bơ t hết rồi ak khocroi

11 tháng 6 2020

dcv_new 

dcv - new

Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)

<=> x = 3 hoặc x = -2 

Vậy m = -1 và x2 = - 2

11 tháng 6 2020

a, Thay \(x_1=3\)vào phương trình , khi đó :

\(pt< =>\)\(3^2+3m+2m-4=0\)

\(< =>5m+5=0\)

\(< =>m=-\frac{5}{5}=-1\)

Thay \(m=-1\)vào phương trình , khi đó :

\(pt< =>x^2-x+2=0\)

\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)

Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)

b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)

Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)

Bạn thiếu đề rồi thì phải !

26 tháng 5 2019

 Vì \(x_2\)là nghiệm của phương trình

=> \(x_2^2-5x_2+3=0\)

=> \(x_2+1=x^2_2-4x_2+4=\left(x_2-2\right)^2\)

Theo viet ta có

\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2_{ }=3\end{cases}}\)=> \(x_1^2+x_2^2=19\)

Khi đó

\(A=||x_1-2|-|x_2-2||\)

=> \(A^2=\left(x^2_1+x_2^2\right)-4\left(x_1+x_2\right)+8-2|\left(x_1-2\right)\left(x_2-2\right)|\)

=> \(A^2=19-4.5+8-2|3-2.5+4|=1\)

Mà A>0(đề bài)

=> A=1

Vậy A=1

4 tháng 3 2020

a) Thay x = 5 vào thì phương trình trở thành \(5^2-5.5+b=0\)

\(\Rightarrow25-25+b=0\Rightarrow b=0\)

Lúc đó phương trình trở thành \(x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

Dễ dàng suy ra nghiệm còn lại của phương trình là 0

b) Thay x = 3 vào thì phương trình trở thành \(3^2+3b-15=0\)

\(\Rightarrow3b-6=0\Leftrightarrow b=2\)

Lúc đó phương trình trở thành \(x^2+2x-15=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

Dễ dàng suy ra nghiệm còn lại của phương trình là -5

4 tháng 3 2020

a) Vì \(x=5\)là 1 nghiệm của phương trình

\(\Rightarrow\)Thay \(x=5\)vào phương trình ta được:

\(5^2-5.5+b=0\)\(\Leftrightarrow25-25+b=0\)\(\Leftrightarrow b=0\)

Thay \(b=0\)vào phương trình ta được:

\(x^2-5x=0\)\(\Leftrightarrow x\left(x-5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

Vậy \(b=0\)và nghiệm thứ 2 của phương trình là \(x=0\)

b) Vì \(x=3\)là 1 nghiệm của phương trình

\(\Rightarrow\)Thay \(x=3\)vào phương trình ta được:

\(3^2+3b-15=0\)\(\Leftrightarrow9+3b-15=0\)

\(\Leftrightarrow3x-6=0\)\(\Leftrightarrow3b=6\)\(\Leftrightarrow b=2\)

Thay \(b=2\)vào phương trình ta được:

\(x^2+2x-15=0\)\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)

Vậy \(b=2\)và nghiệm thứ 2 của phương trình là \(x=-5\)