K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

Không nhất thiết phải sử dụng phép đồng dư.

Nhận xét: với tích của mọi số có tận cùng là 6 ta đều có chữ số tận cùng là 6 tức là 6n luôn tận cùng là 6

Vậy 62009 tận cùng là 6

18 tháng 5 2016

\(6^{2009}=6^{2008}.6=.......6.6=.......6\)

Suy ra chữ số tận cùng của \(6^{2009}\)=6

30 tháng 1 2017

Làm thế này: 521=511.510521=511.510

511≡828125511≡828125 (mod 106106)

510≡765625510≡765625 (mod 106106)

Do đó: 521≡828125.765625521≡828125.765625 (mod 106106)

828125.765625≡203125828125.765625≡203125 (mod 106106)

mk ko chắc

30 tháng 1 2017

5^21=5^11.5^10

5^11=828125

5^10=765625

do đó 5^21 ≡ 828125.765625

828125.765625 ≡ 203125

2 tháng 9 2018

Ta có:

\(2^{2012}=\left(2^4\right)^{503}=16^{503}\)

Ta có:

\(16^5\equiv576\left(mod1000\right)\)

\(\Rightarrow\left(16^5\right)^2\equiv576^2\equiv776\left(mod1000\right)\)

\(\Rightarrow\left(16^{10}\right)^2\equiv776^2\equiv176\left(mod1000\right)\)

\(\Rightarrow\left(16^{20}\right)^4\equiv176^4\equiv576\left(mod1000\right)\)

\(\Rightarrow\left(16^{80}\right)^3\equiv576^3\equiv976\left(mod1000\right)\)

\(\Rightarrow\left(16^{240}\right)^2\equiv976^2\equiv576\left(mod1000\right)\)

\(\Rightarrow16^{480}\equiv576\left(mod1000\right)\)     (1)

Ta có \(16^{20}\equiv576\left(mod1000\right)\)

\(\Rightarrow16^{23}\equiv576.16^3\equiv296\left(mod1000\right)\) (2)

Từ (1),(2)

\(\Rightarrow16^{503}\equiv296.576\equiv496\left(mod1000\right)\)

\(\Rightarrow2^{2012}\equiv496\left(mod1000\right)\)

vậy 3 chữ số tận cùng của 2^2012 là 496

22 tháng 4 2016

Mình không biết dùng đồng dư thức nhưng cách này cũng tương tự:

\(3^{100}=\left(3^4\right)^{25}=\left(...1\right)^{25}=\left(...1\right)\)

Vậy 3100 tận cùng là 1

22 tháng 4 2016

\(3^{20}\)có tận cùng là 01.

\(3^{100}=\left(3^{20}\right)^5=\left(...01\right)^5=\left(...01\right)\)

Vậy 2 chữ số đó là 01

8 tháng 5 2016

Tách 2^999(2^9)^111

rồi suy ra theo mod 100

12 tháng 9 2018

1                                                                                   Bài làm

Ta có :  2^1954 = 2 x 2 x 2 x 2 x ........ x 2 (1954 thừa số 2)

Ta có : 2 x 2 x 2 x 2 = tận cùng là 016 

Vì 1954 : 4 = 448 dư 2 

nên 2 x 2 x 2 x 2 x ...... x 2 (1954 thừa số 2) = 448 nhóm tận cùng là 016 và dư 2 thừa số 2

                                                                    = ..016 x .... 2 x ... 2 = ...064 

=> 3 chữ số tận cùng của tích trên là 064

Vậy 3 chữ số tận cùng của tích trên là 064

 

là số 192 nha bạn 

mình ngồi bấm máy đó mình ko biết đồng thức dư là gì 

chúc bạn học tốt nha