Tìm m, n sao cho:\(\frac{1}{m}+\frac{n}{6}=\frac{1}{2}\)
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{1}{m}\)+\(\frac{n}{6}\)=\(\frac{1}{2}\)
\(\frac{1}{m}\)=\(\frac{1}{2}\)-\(\frac{n}{6}\)
\(\frac{1}{m}\)=\(\frac{3}{6}\)-\(\frac{n}{6}\)
\(\frac{1}{m}\)=\(\frac{3-n}{6}\)
=>m*(3-n)=6
=>3-nEƯ(6)
Ta có bảng giá trị
3-n | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
m | 6 | 3 | 2 | 1 | -6 | -3 | -2 | -1 |
n | 2 | 1 | 0 | -3 | 4 | 5 | 6 | 9 |
1/ Để cho \(\left(n^2+3\right)⋮\left(n+1\right)\) thì
\(A=\frac{n^2+3}{n+1}\) là 1 số nguyên
Ta có: \(A=\frac{n^2+3}{n+1}=n-1+\frac{4}{n+1}\)
Để A nguyên thì (n + 1) phải là ước nguyên của 4 hay
\(\left(n+1\right)=\left(-4,-2,-1,1,2,4\right)\)
\(\Rightarrow x=\left(-5,-3,-2,0,1,3\right)\)
a) \(\frac{5}{2.m}=\frac{1}{6}+\frac{n}{3}\) \(\left(m\ne0\right)\)
\(\frac{15}{6.m}=\frac{m}{6.m}+\frac{2.m.n}{6.m}\)
\(\frac{15}{6.m}=\frac{m+2mn}{6.m}\)
\(m+2mn=15\)
\(m\left(1+2n\right)=15\)
\(\Rightarrow m\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
Với m = 1, 1 + 2n = 15 hay n = 7.
Với m = 3, 1 + 2n = 5 hay n = 2
Với m = 5, 1 + 2n = 2 hay n = 1
Với m = 15, 1 + 2n = 1 hay n = 0.
Vậy ta tìm được 4 cặp (m;n) thỏa mãn là: (1;7) , (3;2) , (5;1) và (15;0)
Câu b, c hoàn toàn tương tự.
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(\Rightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)
\(\Rightarrow\frac{2}{n}=\frac{m-1}{2}\)
\(\Rightarrow\hept{\begin{cases}2=m-1\\n=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}m=3\\n=2\end{cases}}\)
Câu còn lại làm nốt
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{n}=\frac{m-1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}2=m-1\\n=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=3\\n=2\end{cases}}\)
\(\frac{1}{m}-\frac{n}{6}=\frac{1}{2}\)
\(\Leftrightarrow\frac{n}{6}=\frac{1}{m}-\frac{1}{2}\)
\(\Leftrightarrow\frac{n}{6}=\frac{2-m}{2m}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\6=2m\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\m=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-3\\m=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=-1\\m=3\end{cases}}\)
Lời giải:
Áp dụng hệ quả quen thuộc của BĐT AM-GM:
$3(ab+bc+ac)\leq (a+b+c)^2$
$1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}$
Do đó:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ac}\geq \frac{(1+1+1+1)^2}{a^2+b^2+c^2+3(ab+bc+ac)}=\frac{16}{(a+b+c)^2+ab+bc+ac}\)
\(\geq \frac{16}{(a+b+c)^2+\frac{(a+b+c)^2}{3}}=\frac{12}{(a+b+c)^2}=12\)
\(\frac{2}{3ab}+\frac{2}{3bc}+\frac{2}{3ac}=\frac{2}{3}.\frac{a+b+c}{abc}=\frac{2}{3abc}\geq \frac{2}{3.\frac{1}{27}}=18\)
Cộng 2 BĐT trên lại:
\(\Rightarrow \frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\geq 12+18=30\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Lời giải:
Áp dụng hệ quả quen thuộc của BĐT AM-GM:
$3(ab+bc+ac)\leq (a+b+c)^2$
$1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}$
Do đó:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ac}\geq \frac{(1+1+1+1)^2}{a^2+b^2+c^2+3(ab+bc+ac)}=\frac{16}{(a+b+c)^2+ab+bc+ac}\)
\(\geq \frac{16}{(a+b+c)^2+\frac{(a+b+c)^2}{3}}=\frac{12}{(a+b+c)^2}=12\)
\(\frac{2}{3ab}+\frac{2}{3bc}+\frac{2}{3ac}=\frac{2}{3}.\frac{a+b+c}{abc}=\frac{2}{3abc}\geq \frac{2}{3.\frac{1}{27}}=18\)
Cộng 2 BĐT trên lại:
\(\Rightarrow \frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\geq 12+18=30\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
\(\frac{1}{m}+\frac{n}{6}=\frac{1}{2}\Leftrightarrow\frac{6}{6m}+\frac{mn}{6m}=\frac{1}{2}\Leftrightarrow\frac{6+mn}{6m}=\frac{1}{2}\)
\(\Rightarrow2\left(6+mn\right)=6m\Leftrightarrow6+mn=3m\Leftrightarrow mn-3m+6=0\)
\(\Leftrightarrow m\left(n-3\right)=-6\Leftrightarrow m=\frac{-6}{n-3}=\frac{6}{3-n}\)(*)
Để m nhận giá trị nguyên thì \(\frac{6}{3-n}\in Z\Rightarrow6⋮3-n\Rightarrow\)3-n là ước nguyên của 6 (Do n thuộc Z)
\(\Rightarrow3-n\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)
\(\Rightarrow n\in\left\{2;1;0;-3;4;5;6;9\right\}\)
Thay 3 - n vào (*) ta có giá trị tương ứng của m: \(m\in\left\{6;3;2;1;-6;-3;-2;-1\right\}\)
Vậy \(\left(m;n\right)\in\left\{\left(6;2\right);\left(3;1\right);\left(2;0\right);\left(1;-3\right);\left(-6;4\right);\left(-3;5\right);\left(-2;6\right);\left(-1;9\right)\right\}.\)
Bài 1
a.\(\frac{-3}{4}\)-y:\(\frac{1}{5}\)=\(\frac{9}{28}\)
y:\(\frac{1}{5}\)=\(\frac{-15}{14}\)
y= \(\frac{-3}{14}\)
b.5x + 5x+2=650
5x . 1 + 5x + 52=650
5x(1+25)=650
5x.26=650
5x=25
x=2
m = 3
n = 1
m = 3
n = 1