cho tam giác dec có de=dc>ec.trung trực dc cắt ed tại a.trên tia đối da lấy b sao cho db=ae.cm:góc adc=acd
tam giác abc cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A nằm trên trung trực của DC
=>AD=AC
=>góc ADC=góc ACD
b: Xét ΔDEA và ΔCDB có
DE=CD
góc BDC=góc DEA
EA=DB
=>ΔDEA=ΔCDB
=>DA=CB=AC
=>ΔABC cân tại C
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
b: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
c: Xét ΔDAM vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADM}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAM=ΔDEC
=>DM=DC