K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2015

Do abc = 1 nên \(ca=\frac{1}{b};1=abc\)

 \(\Rightarrow\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{b}+c+1}\)

\(=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{b}+\frac{cb}{b}+\frac{b}{b}}=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)

\(=\frac{1+b+bc}{bc+b+1}=1\) => ĐPCM

22 tháng 2 2020

k cần nữa ạ

13 tháng 7 2016

Ta có : \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ac+1}{a}\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)

Từ \(a+\frac{1}{b}=b+\frac{1}{c}\Rightarrow a-b=\frac{1}{c}-\frac{1}{b}\Leftrightarrow a-b=\frac{b-c}{bc}\)(1)

Tương tự : \(b+\frac{1}{c}=c+\frac{1}{a}\Leftrightarrow b-c=\frac{c-a}{ac}\) (2) ; \(c+\frac{1}{a}=a+\frac{1}{b}\Leftrightarrow c-a=\frac{a-b}{ab}\)(3)

Nhân (1) , (2), (3) theo vế :

\(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2b^2c^2}\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(1-\frac{1}{a^2b^2c^2}\right)=0\)

Vì abc khác 1 nên\(a^2b^2c^2\ne1\) \(\Rightarrow1-\frac{1}{a^2b^2c^2}\ne0\)

Do đó \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\Rightarrow\)a = b hoặc b = c hoặc c = a

  • Với a = b , từ giả thiết ta có b = c => a = b = c
  • Với b = c , từ giả thiết ta có c = a => a = b = c
  • Với c = a , từ giả thiết ta có a = b => a = b = c

Vậy a = b = c 

16 tháng 2 2021

giúp với 

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

26 tháng 2 2021

Theo bđt Cauchy - Schwart ta có:

\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)

\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)

Đặt \(ab+bc+ca=x;abc=y\).

Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)

\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )

Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1

26 tháng 2 2021

sai rồi nhé bạn 

6 tháng 12 2017

ap dung tinh chat day ti so bang nhau  la dc

NV
22 tháng 2 2020

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}=\frac{a+ab+1}{ab+a+1}=1\)

5 tháng 4 2017

a) đề thiếu òi bạn à            

NV
3 tháng 7 2020

4.

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

5.

\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)

Cộng vế với vế:

\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

NV
3 tháng 7 2020

1.

Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)

\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

2.

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)

Cộng vế với vế:

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)

3.

Từ câu b, thay \(c=1\) ta được:

\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)