Cho \(\frac{a}{b}<\frac{c}{d}\). Chứng minh: \(\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ab+ad< ab+bc\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow\left(a+c\right)d< \left(b+d\right)c\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
từ \(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Ta có : \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\) ( 1 )
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(d+b\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Vì \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{c}{d}=ad< bc\)
\(\Rightarrow ad+cd< bc+cd\) ( 2 )
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
\(\frac{a}{b}< \frac{c}{d}\)
\(\Leftrightarrow ad< bc\)
\(\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
\(\frac{a}{b}< \frac{c}{d}\)
\(\Leftrightarrow ad< bc\)
\(\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) ; (2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
+) \(ad+ab< bc+ab\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )
+) \(ad+cd< bc+cd\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
Vì \(b,d>0\Rightarrow bd>0\)
\(\Rightarrow ad< bc\)
Ta lại có:
\(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)
\(\frac{a+c}{b+d}=\frac{b\left(a+c\right)}{b\left(b+d\right)}=\frac{ab+bc}{b\left(b+d\right)}\)
Vì \(b,d>0\)
Nên \(b\left(b+d\right)>0\)và \(d\left(b+d\right)>0\) \(\left(1\right)\)
Mà \(ad< bc\Leftrightarrow ab+ad< ab+bc\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)ta có: \(\frac{ab+ad}{b\left(b+d\right)}>\frac{ab+bc}{b\left(b+d\right)}\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(\cdot\right)\)
Ta lại có:
\(\frac{a+c}{b+d}=\frac{d\left(a+c\right)}{d\left(b+d\right)}=\frac{ad+cd}{d\left(b+d\right)}\)
\(\frac{c}{d}=\frac{c\left(b+d\right)}{d\left(b+d\right)}=\frac{bc+cd}{d\left(b+d\right)}\)
Mà \(ad< bc\Rightarrow ad+cd< bc+cd\left(3\right)\)
Từ \(\left(1\right)\)và \(\left(3\right)\)ta có:
\(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(\cdot\cdot\right)\)
Từ \(\left(\cdot\right)\)và \(\left(\cdot\cdot\right)\)ta có: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)
b, Theo câu a ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ (1) và (2) => đpcm
a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)
b, Theo câu a, ta có:
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)
Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)
Từ (1) và (2) => đpcm.
Cho \(\frac{a}{b}<\frac{c}{d}\Rightarrow\)ad<bc
Ta so sánh:\(\frac{a}{b}và\frac{a+c}{b+d}\)
\(\Leftrightarrow\frac{a\left(a+c\right)}{b\left(a+c\right)}và\frac{\left(a+c\right)a}{\left(b+d\right)a}\)
\(\Leftrightarrow\frac{aa+ac}{ba+bc}và\frac{aa+ca}{ba+da}\)
Vì aa+ac=aa+ca nên ta so sánh ba+bc và ba+da
Vì ba=ba nên ta so sánh bc và da
Mà bc>da \(\Rightarrow\)ba+bc>ba+da
\(\Rightarrow\)\(\frac{aa+ac}{ba+bc}<\frac{aa+ca}{ba+da}\)
\(\Rightarrow\)\(\frac{a}{b}<\frac{a+c}{b+d}\)(1)
Ta so sánh:\(\frac{a+c}{b+d}và\frac{c}{d}\)
\(\Leftrightarrow\frac{\left(a+c\right)c}{\left(b+d\right)c}và\frac{\left(a+c\right)c}{\left(a+c\right)d}\)
\(\Leftrightarrow\frac{ac+cc}{bc+dc}và\frac{ac+cc}{ad+cd}\)
Vì ac+cc=ac+cc nên ta so sánh bc+dc và ad+cd
Vì dc=cd nên ta so sánh bc và ad
Mà bc>ad
\(\Rightarrow\frac{ac+cc}{bc+dc}<\frac{ac+cc}{ad+cd}\)
\(\Rightarrow\frac{a+c}{b+d}<\frac{c}{d}\)(2)
Từ (1) và (2):
\(\Rightarrow\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)
a/b<c.d
=>ad<bc
=> ad+ab<bc+ab
=> a*(b+d)<b*(a+c)
=>a/b<a+c/b+d (1)
Lại có ad < bc
=> ad + cd < bc + cd
=> d*(a+c)<c*(b+d)
=>c/d>a+c/b+d (2)
Từ (1) và (2)
=> a/b<a+c/b+d<c/d
=> DPCM