K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

1/1.2   +  1/2.3   +  1/3.4  + ... +   1/49.50

=1-1/2+1/2-1/3+...+1/49-1/50

=1-1/50

=49/50 

ta có :9/10=45/50

=>49/50>45/50

=>1/1.2   +  1/2.3   +  1/3.4  + ... +   1/49.50  > 9/10

7 tháng 5 2016

1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50

= 1 - 1/50

= 49/50

=> 49/50 > 9/10

=> 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50 > 9/10

Chúc bn có kết quả hc kì II thật tốt nha !!!!!!!!!!!! ^_^

1 tháng 5 2016

đặt A=1/1.2+1/2.3+1/3.4+..........1/49.50

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}<1\)

vậy A<1

1 tháng 5 2016

1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50

1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50

1 - 1/50 < 1

7 tháng 5 2016

49/50>45/50

7 tháng 5 2016

Ta có : 1/1.2 + 1/2.3 + ... + 1/49.50

= 1-1/2+1/2-1/3 +...+1/49-1/50

= 1- 1/50 

= 49/50 > 45/50 = 9/10(đpcm)

20 tháng 4 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\) (đpcm)

20 tháng 4 2017

ta có :

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}< 1\)

11 tháng 8 2015

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(1-\frac{1}{50}<1\)

11 tháng 8 2015

Ta có : 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50 

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50

= 1 - 1/50 < 1

Nên 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50 < 1

DD
12 tháng 7 2021

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

\(B=1.2+2.3+3.4+...+49.50\)

\(3B=1.2.3+2.3.3+3.4.3+...+49.50.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)

\(=49.50.51\)

\(B=\frac{49.50.51}{3}=49.50.17\)

\(50^2.A-\frac{B}{17}=49.50-49.50=0\)

6 tháng 1 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{100.101}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{100}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)\(=\frac{101}{101}-\frac{1}{101}\)

\(=\frac{100}{101}\)

6 tháng 1 2017

thank you

19 tháng 6 2015

Ta thấy:\(\frac{1}{1.2}=1-\frac{1}{2},\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3},...,\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)

=>\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

=>\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=>\(A=1-\frac{1}{50}\)

=>\(A=\frac{49}{50}\)

6 tháng 3 2018

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A=1-\frac{1}{50}\)

\(\Rightarrow A=\frac{49}{50}\)

12 tháng 2 2016

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A=1-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}\)

12 tháng 2 2016

bai toan nay kho