S= /x+2/+/2y-10/+2011 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó (dấu / là giá trị tuyệt đối
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị của x và y để :
S = x + 2 + 2y –10 + 2011 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó .
bài này dễ mà
giá trị của S nhỏ nhất
<=> Ix+2I và I2y-10I bé nhất mà chúng có giái trị bé nhất =0
=> giá trụ bé nhất của S là 2011
Vì |x-y| ≥0 với mọi x,y;|x+1|≥0 vs mọi x=>A≥2016 vs mọi x,y
=> A đạt giá trị nhỏ nhất khi:{
|x−y|=0 |
|x+1|=0 |
⇔{
x−y=0 |
x+1=0 |
⇔{
x=y |
x=−1 |
vậy với x=y=-1 thì S đạt giá trị nhỏ nhất là 2016
\(S=\left|x+2\right|+\left|2y-10\right|+2016\)
\(S\ge2016\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)
ta có: lx+3l \(\ge\) 0 với mọi x
l2y-14l \(\ge\) 0 với mọi y
=> S= |x+3|+|2y-14|+2016 \(\ge\) 2016 với mọi x,y
dấu = xảy ra là giá trị nhỏ nhất của S đạt được khi và chỉ khi S=2016.
\(\Leftrightarrow\) lx+3l = 0 và l2y-14l = 0
\(\Leftrightarrow\) x+3=0 và 2y-14=0
\(\Leftrightarrow\)x=-3 và y=7
Vậy MinS=2016 \(\Leftrightarrow\) x=-3 và y=7
Do s=|x+3|+|2y-14|+2016 đạt giá trị nhỏ nhất nên:
x+3=0=>x=-3
2y-14=0=>y=7
Mk làm như thế này có đúng không ta?
Do \(\left|x-19\right|\ge0\)
\(\left|2y-10\right|\ge0\)
\(\Rightarrow\left|x-19\right|+\left|2y-10\right|\ge0\)
\(\Rightarrow\left|x-19\right|+\left|2y-10\right|+2019\ge0+2019=2019\)
Dấu " = " xảy ra :
\(\hept{\begin{cases}x-19=0\\2y-10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=19\\y=5\end{cases}}\)
Do đó : x = 19 , y = 5
Thay x = 19 , y = 5 ta có :
\(\left|19-19\right|+\left|2\cdot5-10\right|+2019\)
\(=0+0+2019=2019\)
Vậy giá trị nhỏ nhất của S là 2019
Mk thi chưa làm xong GTNN =_=" , ko bt bao nhiêu điểm Toán nữa
để S đạt giá trị nhỏ nhất thì s=2011=>/x+2/ và/2y-10/=0=>x=-2;y=5
do các số trong giá trị tuyệt đối đều lớn hơn hoặc =0 nên muốn S đạt giá trị nhỏ nhất thì S nhỏ hơn bằng 2011
vậy thì mún S nhỏ nhất thì =>
x+2=0 => x=-2
2y-10=0 => y=5
vậy y=5 và x=-2