Tính giá trị của biểu thức:
5/1.3 + 5/3.5 + 5/5.7 +...+ 5/91.93 + 5/93.95
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{91.93}+\frac{5}{93.95}=5\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{91.93}+\frac{1}{93.95}\right)=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{91.93}+\frac{2}{93.95}\right)\)
\(\Rightarrow A=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{91}-\frac{1}{93}+\frac{1}{93}-\frac{1}{95}\right)=\frac{5}{2}\left(1-\frac{1}{95}\right)=\frac{5}{2}.\frac{94}{95}=\frac{47}{19}\)
Vậy \(A=\frac{47}{19}\)
\(A=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{93.95}\)
\(A=5\cdot\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-....-\frac{1}{95}\right)\)
\(A=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{95}\right)=\frac{5}{2}\cdot\frac{94}{95}=\frac{47}{19}\)
\(\frac{2}{5}A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{93.95}\)
\(\frac{2}{5}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{93}-\frac{1}{95}\)
\(\frac{2}{5}A=1-\frac{1}{95}=\frac{94}{95}\)
\(A=\frac{47}{19}\)
A= 5/1.3 +5/3.5 +5/5.7+....+5/91.93 + 5/93.95
A= 5/2 . (1-1/3+1/3-1/5+1/5-1/7+...+1/91-1/93+1/93-1/95)
A=5/2. (1-1/95)
A= 5/2 . 94/95
A=47/19
Nhớ k nha
Đặt A= 5/1.3 + 5/3.5 + 5/5.7 + ... + 5/91.93 + 5/93.95
=> 2/5 A = 2/5 . (5/1.3 + 5/3.5 + 5/5.7 + ... + 5/91.93 + 5/93.95)
<=> 2/5A = 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/91.93 + 2/93.95
<=> 2/5A = 1-1/3 +1/3-1/5+1/5-1/7+...+1/91-1/93+1/93-1/95
<=> 2/5A = 1-1/95
<=> 2/5A = 94/95
=> A = 94/95 : 2/5
<=> A = 47/19
= 5- 5/3 + 5/3 - 5/5 + ... + 5/93 - 5/95
= 5 -5/95
= 90/95
Đ/s: 90/95
5/1.3 + 5/3.5 +5/5.7+....+5/91.93 + 5/93.95
= 5/2 . (1-1/3+1/3-1/5+1/5-1/7+....+1/91-1/93+1/93-1/95)
= 5/2 . (1-1/95)
= 5/2 . 94/95
= 47/19
Nhớ k nha
\(S=\dfrac{1}{2}.\left(\dfrac{2}{\sqrt{1.3}}+\dfrac{2}{\sqrt{3.5}}+.......+\dfrac{2}{\sqrt{29.31}}\right)\)
\(S=\dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}+\dfrac{1}{\sqrt{5}}+.....-\dfrac{1}{\sqrt{29}}+\dfrac{1}{\sqrt{29}}-\dfrac{1}{\sqrt{31}}\right)\)
\(S=\dfrac{1}{2}.\left(1-\dfrac{1}{\sqrt{31}}\right)=\dfrac{1}{2}.\left(\dfrac{31-\sqrt{31}}{31}\right)=\dfrac{31-\sqrt{31}}{62}\)
\(B=\dfrac{2^{24}\cdot3^5-2^{24}\cdot3^4}{2^{24}\cdot3^5}+1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{301}-\dfrac{1}{303}\)
\(=\dfrac{2^{24}\cdot3^4\left(3-1\right)}{2^{24}\cdot3^5}+\dfrac{302}{303}\)
\(=\dfrac{2}{3}+\dfrac{302}{303}=\dfrac{202+302}{303}=\dfrac{504}{303}\)
=168/101
a.2/1.3+2/3.5+2/5.7+................+2/99.101
1-1/3+1/3-1/5+1/5-1/7+....+1/99-1/101
1-1/101
100/101
b.5/1.3+5/3.5+5/5.7+............+5/99.101
5.2/1.3.2+5.2/3.5.2+5.2/5.7.2+........+5.2+99.101.2
5/2(2/1.3+2/3.5+2/5.7+........+2/99.101)
5/2(1-1/3+1/3-1/5+1/5-1/7+........+1/99-1/101)
5/2(1-1/101)
5/2.100/101
250/101
Chào Shanks :) Cô giải như sau:
Đặt \(A=1.3+3.5+5.7+...+652665.652667\)
\(\Rightarrow6A=1.3.6+3.5.6+5.7.6+...+652665.652667.6\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+652665.652667\left(652669-652663\right)\)
\(=1.3.5+3+3.5.7-1.3.5+5.7.9-3.5.7+...+\)
\(...+652665.652667.652669-652663.652665.652667\)
\(=3+652665.652667.652668\)
Vậy \(A=\frac{3+652665.652667.652668}{6}\)
Bài này cho số to quá. Cách làm tổng quát dạng này là ta nhân biểu thức cần tính với 3 lần khoảng cách giữa các số để tạo ra các số đối để triệt tiêu dần cho nhau.
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2
=(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2
=(1/2-1/2010).2
=1004/1005