tìm số n biết n là số tự nhiên để : A=2n +5 /3n +1
giải giúp tớ với!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng mọi phân số có dạng:
a)n+1/2n+3 (n là số tự nhiên)
b)2n+3/3n+5 ( n là số tự nhiên) đều là phân số tối giản
Bài 1: Gọi d=ƯCLN(3n+11;3n+2)
=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)
=>\(3n+11-3n-2⋮d\)
=>\(9⋮d\)
=>\(d\in\left\{1;3;9\right\}\)
mà 3n+2 không chia hết cho 3
nên d=1
=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau
Bài 2:
a:Sửa đề: \(n+15⋮n-6\)
=>\(n-6+21⋮n-6\)
=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)
mà n>=0
nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)
b: \(2n+15⋮2n+3\)
=>\(2n+3+12⋮2n+3\)
=>\(12⋮2n+3\)
=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)
mà n là số tự nhiên
nên n=0
c: \(6n+9⋮2n+1\)
=>\(6n+3+6⋮2n+1\)
=>\(2n+1\inƯ\left(6\right)\)
=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
Rút gọn ta được \(A=\frac{9n-9}{n-3}=\frac{9n-27+18}{n-3}=\frac{9\left(n-3\right)}{n-3}+\frac{18}{n-3}=9+\frac{18}{n-3}\)
Để A là số tự nhiên thì \(9+\frac{18}{n-3}\)cũng là số tự nhiên
Suy ra \(\frac{18}{n-3}\)là số tự nhiên , nên 18 chia hết cho n-3
n-3=1; n-3=2; n-3=3; n-3=6; n-3=9; n-3=18
Vậy n=4; n=5; n=6; n=9; n=12; n=21
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
`A = n^2(n^4 - 2n^3 + 2n^2 - 2n + 1)`
Để `A` chính phương thì `n^4 - 2n^3 + 2n^2 - 2n + 1 = a^2 (a in NN)`.
`<=> n^4 -2n^3 + n^2 + n^2- 2n +1 = a^2`
`<=> (n^2+1)(n-1)^2 = a^2`.
Vì `(n-1)^2` chính phương, `a^2` chính phương.
`=> n^2+1` chính phương.
Đặt `n^2+1 = b^2(b in NN)`.
`=> (b-n)(b+n) =1`
Mà `b, n in NN`.
`=> {(b-n=1), (b+n=1):}`
`<=> {(b=1), (n=0):}`
Vậy `n = 0`.