K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{21.23}\)

\(=5-\frac{5}{3}+\frac{5}{3}-\frac{5}{5}+\frac{5}{5}-\frac{5}{7}+...+\frac{5}{21}-\frac{5}{23}\)

\(=5\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{21}-\frac{1}{23}\right)\)

\(=5\left(1-\frac{1}{23}\right)\)

\(=5.\frac{22}{23}\)

\(=\frac{110}{23}\)

2 tháng 5 2016

\(A=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{21}-\frac{1}{23}\right)\)

\(A=\frac{5}{2}.\left(1-\frac{1}{23}\right)\)

\(A=\frac{5}{2}.\frac{22}{23}\)

\(A=\frac{55}{23}\)

31 tháng 12 2015

\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{35.37}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{35}-\frac{1}{37}\)

\(=\frac{1}{1}-\frac{1}{37}<1\text{ Vậy }A<1\)

31 tháng 12 2015

Monkey D.Luffy điêu vừa thui mới học lớp 6 mà ông cũng nói dễ

18 tháng 4 2016

\(\frac{1}{3^2}<\frac{1}{3.4}\)

\(\frac{1}{4^2}<\frac{1}{4.5}\)

\(\frac{1}{5^2}<\frac{1}{5.6}\)

\(...\)

\(\frac{1}{100^2}<\frac{1}{100.101}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3}-\frac{1}{101}\)

Mà \(\frac{1}{3}<\frac{1}{2}\) nên \(\frac{1}{3}-\frac{1}{101}<\frac{1}{2}\)

hay \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{2}\)

17 tháng 4 2016

Đặt A=1/3^2+1/4^2+1/5^2+...+1/100^2

Suy raA<1/2*3+1/3*4+1/4*5+..+1/99*100

A<1/2-1/100<1/2

Ta có điều phải chứng minh.

4 tháng 4 2016

\(S=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{20^2}\)

\(S=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{20^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)

\(S<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)

\(S<\frac{1}{2}-\frac{1}{20}<\frac{1}{2}\)

Vậy \(S<\frac{1}{2}\)

4 tháng 4 2016

Cám ơn bạn rất nhiều hjhj

8 tháng 1 2017

Gần đúng được không

\(A=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)cách làm \(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\) tách hết ra bạn thấy cái giữa tự triệt tiêu nhau

\(B=\frac{5}{1.3}+...+\frac{5}{23.25}\) { nếu đúng là \(\frac{5}{23.5}\)  thì làm đến \(\frac{5}{21.23}\) rồi cộng lẻ cái cuối

\(\frac{2B}{5}=\frac{2}{1.3}+...+\frac{1}{23.25}=1-\frac{1}{25}\) cách làm giống (a)

\(\frac{2}{5}B=1-\frac{1}{25}=\frac{24}{25}\Rightarrow B=\frac{24}{25}.\frac{5}{2}=\frac{12}{5}\)

12 tháng 4 2017

A=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)

=\(\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{19}-\frac{1}{20}\right)\)

=\(\frac{1}{2}-\frac{1}{20}=\frac{10-1}{20}=\frac{9}{20}\)

2 tháng 6 2016

a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101 

=1-1/101 

=100/101 

b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5 

=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5 

=(1-1/101).2,5

=100/101.2,5 

=250/101 

dấu / là phần nhé. bạn có thể xem bài có dấu phần ở : Câu hỏi của Nguyễn Thị Hoài Anh 

2 tháng 6 2016

A)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

=1-\(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

=1-\(\frac{1}{101}\)

=\(\frac{100}{101}\)

B) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{1}{99.101}\)

=5.(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{2}{2}.\)(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{1}{2}\).(\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{1}{2}\).(1-\(\frac{1}{3}\)+\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

=5.\(\frac{1}{2}\).(1-\(\frac{1}{101}\))

=\(\frac{5}{2}.\frac{100}{101}=\frac{250}{100}\)

Chúc bạn học tốtleuleu

C=\(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).....\(\frac{9.9}{8.10}\)=\(\frac{2.2.3.3...9.9}{1.3.2.4...8.10}\)\(\frac{2.9}{1.10}\)\(\frac{9}{5}\)

6 tháng 7 2016

\(D.=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(D=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(D=\frac{5}{2}.\frac{98}{99}\)

\(D=\frac{245}{99}\)

7 tháng 5 2016

\(a,=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

\(b,=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

7 tháng 5 2016

a,\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)=1.\frac{99}{100}=\frac{99}{100}\)

C1:

Ta có

x+10%x-10%x=297

=>x=297

C2:

S=Đề bài...

=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\)

=\(\frac{1}{1}-\frac{1}{101}\)

=\(\frac{100}{101}\)

#hoctot

10 tháng 9 2019

Câu 2:

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.100}\)

\(\Rightarrow2S=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.100}\right)\)

\(\Rightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.100}\)

\(\Rightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}+\frac{1}{101}\)

\(\Rightarrow2S=1-\frac{1}{101}\)

\(\Rightarrow2S=\frac{100}{101}\)

\(\Rightarrow S=\frac{100}{101}:2=\frac{100}{101}.\frac{1}{2}=\frac{50}{101}\)