Bài 4. Cho tam giác ABC có AB < AC và phân giác AD (D ∈ BC). Trên AC lấy điểm E sao cho
AE = AB. Trên tia AB lấy điểm F sao cho AC = AF. Chứng minh:
a) DB DE BF CE = = ;
b) Ba điểm F D E , , thẳng hàng
c) BE FC AD FC / / ; ⊥
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra DB=DE
Ta có: AB+BF=AF
AE+EC=AC
mà AF=AC
và AB=AE
nên BF=EC
b: Xét ΔBDF và ΔEDC có
BF=EC
\(\widehat{DBF}=\widehat{DEC}\)
BD=DE
Do đó: ΔBDF=ΔEDC
Suy ra: \(\widehat{BDF}=\widehat{EDC}\)
=>\(\widehat{BDF}+\widehat{BDE}=180^0\)
=>E,D,F thẳng hàng
c: Xét ΔAFC có
AB/AF=AE/AC
nên BE//FC
Ta có: ΔACF cân tại A
mà AD là đường phân giác
nên AD là đường cao
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>BD=ED
b: AB+BF=AF
AE+EC=AC
mà AB=AE và AF=AC
nên BF=EC
c: Xét ΔDBF và ΔDEC có
DB=DE
góc DBF=góc DEC
BF=EC
=>ΔDBF=ΔDEC
d: AF=AC
DF=DC
=>AD là trung trực của CF
=>AD vuông góc CF
Câu C bạn cm AFCE là hình chữ nhật , FE là đường chéo => E,F,M thẳng hàng vì 2 đường chéo hình chữ nhật đi qua trung điểm của mỗi đường.
Bạn ghi lại đề đi bạn
Chắc đề đây này:
Bài 4. Cho tam giác ABC có AB < AC và phân giác AD (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB. Trên tia AB lấy điểm F sao cho AC = AF. Chứng minh:
a) DB = DE ; BF = CE
b) Ba điểm F , D , E thẳng hàng
c) BE // FC ; AD \(\perp\) FC