Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
b: BA+AF=BF
BE+EC=BC
mà BA=BE và AF=EC
nên BF=BC
ΔBFC cân tại B
mà BD là phân giác
nên BD vuông góc FC
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
d: ΔBAD=ΔBED
=>góc BED=góc BAD=90 độ
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
Do đó:ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )
A B C D E
Hình mik vẽ k đúng với câu b :D Chỉ minh họa thôi nhé !
a) Xét △ABC có AE là tia phân giác
\(\Rightarrow\frac{EB}{EC}=\frac{AB}{AC}\)
Vì AB = AD
\(\Rightarrow\frac{EB}{EC}=\frac{AD}{AC}\)
\(\Rightarrow\)AE // BD (Định lí Thales đảo)
b) Đổi : 120cm = 12 dm
Ta có : \(\frac{AB}{AC}=\frac{EB}{EC}\)
\(\Rightarrow\frac{EB}{AB}=\frac{EC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{EB}{AB}=\frac{EC}{AC}=\frac{EB+EC}{AB+AC}=\frac{BC}{8+12}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}EB=\frac{1}{2}.AB=\frac{1}{2}.8=4dm\\EC=\frac{1}{2}.AC=\frac{1}{2}.12=6dm\end{cases}}\)
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>BD=ED
b: AB+BF=AF
AE+EC=AC
mà AB=AE và AF=AC
nên BF=EC
c: Xét ΔDBF và ΔDEC có
DB=DE
góc DBF=góc DEC
BF=EC
=>ΔDBF=ΔDEC
d: AF=AC
DF=DC
=>AD là trung trực của CF
=>AD vuông góc CF