Ước của số chính phương p2 là??
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho số M = 2016+p1.p2...pn(với p1,p2,...,pm là n số đầu tiên n>2012). Hỏi M có phải số chính phương?
Ta có: p1, p2, p3,...pn là n số nguyên tố đầu tiên
=> p1.p2.p3....pn chia hết cho 3 và không chia hết cho 9
Đặt p1.p2...pn =3k, k không chia hết cho 3
=> M=2016+p1.p2.p3...pn=9.224+3k=3(3.224+k)
Giả sử M là số chính phương khi đó M chia hết cho 9
=> 3.224+k chia hết cho 3 => k chia hết cho 3 ( vô lí vì k ko chia hết cho 3)
Vậy M ko là số chính phương
Với \(p=2\) thì \(2p^4-p^2+16=44\) không là số chính phương.
Với \(p=3\) thì \(2p^4-p^2+16=169\) là số chính phương.
Với \(p\ge5\), suy ra \(p⋮̸3\). Dễ dàng kiểm chứng \(p^2\equiv1\left(mod3\right)\) còn \(2p^4\equiv2\left(mod3\right)\). Lại có \(16\equiv1\left(mod3\right)\) nên \(2p^4-p^2+16\equiv2\left(mod3\right)\), do đó \(2p^4-p^2+16\) không thể là số chính phương.
Như vậy, số nguyên tố \(p\) duy nhất thỏa mãn ycbt là \(p=3\)
Mình quên mất là không cần xét \(p=2\) đâu vì đề bài cho \(p\) nguyên tố lẻ.
ta có 9000 = 3002 là 1 số chính phương
vậy số chính phương lớn nhất là ước của 9000
là 9000
tập hợp ước của 9000 là 1,3,...,9000
nên số lớn nhất là 9000
vậy số cần tìm là 9000
-\(Ư\left(p^2\right)=\left\{Ư\left(p\right);p^2\right\}\)