\(\frac{\left(1.2+2.3+3.4+.....+98.99\right)y}{1}=184800\) tim y
2\ \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....\frac{1}{37.38.39}\right).1428+185,8\) tinh gia tri cua bieu thuc tren
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng quát : \(\frac{2}{(a-1)\cdot a\cdot(a+1)}=\frac{1}{a(a-1)}-\frac{1}{a(a+1)}\)
Ta có : \(2A=2\cdot(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{37\cdot38\cdot39})\cdot1428+185\cdot8\)
\(\Leftrightarrow2A=(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{37\cdot38\cdot39})\cdot1428+185\cdot8\)
\(\Leftrightarrow2A=[(\frac{1}{1\cdot2}-\frac{1}{2\cdot3})+(\frac{1}{2\cdot3}-\frac{1}{3\cdot4})+...+(\frac{1}{37\cdot38}+\frac{1}{38\cdot39})]\cdot1428+185\cdot8\)
\(\Leftrightarrow2A=(\frac{1}{1\cdot2}-\frac{1}{38\cdot39})\cdot1428+185\cdot8=\frac{541680}{247}\)
\(\Leftrightarrow A=\frac{541680}{494}=1096,518219\approx1096,5\)
Chúc bạn học tốt
A = ( 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/37.38.39 ) . 1428 + 185 . 8
A = 1/2( 2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ... + 2/37.38.39 ) . 1428 + 185.8
A = 1/2( 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/37.38 - 1/38.39 ) . 1428 + 185.8
A = 1/2( 1/1.2 - 1/38.39 ) . 1428 + 185.8
A = 1/2 . 370/741 . 1428 + 185.8
A = 185/741 . 1428 + 185 . 8
A = 185 . 1428 : 741 + 185 . 8
A = 185 . 476/247 + 185 . 8
A = 185 ( 476 / 247 + 8 )
A = 185. 2452/247
A = 1836,518219
\(\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)x=\frac{1}{3}\left(2014.2015.2016-2013.2014.2015........+2.3.4-1.2.3+1.2.3-0.1.2\right)\)
\(\left(\frac{1}{2}-\frac{1}{2014.2015}\right)x=\frac{1}{3}.2014.2015.2016\)
\(x=\frac{1}{3.2029104}.2014^2.2015^2.2016=\)
\(\left(\frac{1}{2}-\frac{1}{2014.2015}\right)x=\frac{1}{3}.2014.2015.2016\)
\(2A=2\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}\right).1428+1480\)
\(=\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{37.38.39}\right)\times1428+1480\)
\(=\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\times1428+1480\)
\(=\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\times1428+1480\)
\(=\left(\frac{741}{1482}-\frac{1}{1482}\right)\times1428+1480\)
\(=\frac{740}{1482}\times1428+1480\)
\(=\frac{528360}{741}+1480\)
Vongola: Em tách đúng tuy nhiên A còn hạng tử đằng sau, em nhân 2 thì phải nhân cả hạng tử đó nữa. Tức là không phải 1480 mà là 2960 e nhé :)
\(F=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=\frac{n-1}{n}\)
\(\Rightarrow F=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)
\(\Rightarrow F=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\left(đpcm\right)\)
\(H=2+4+6+...+2n\)
\(M=\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\right).1482+185.8\)
ta đặt: A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007
2.A = 2(1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007)
2.A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/2005.2006.2007
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/2005.2006- 1/2006.2007)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... +1/2005.2006 - 1/2006.2007
= 1/1.2 - 1/2006.2007
=> A = (1/1.2 - 1/2006.2007):2
A = 1/4 - 1/1003.2007
Đặt B = 1/1.2 + 1/2.3+ 1/ 3.4 ..... + 1/2006.2007
=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/2006-1/2007)
=1/1-1/2+1/2-1/3+1/3-1/4+....+1/2006-1/2007
=1/1-1/2007
= 2006/2007
thay vào phương trình ta có phương trình trở thành:
(1/4 - 1/1003.2007).x = 2006/2007
..........
còn lại bạn tính nhé
Bài này không tính nhé tth nghĩ nát óc mới ra :3
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2005.2006.2007}\right)x=1.2\left(3-0\right)+2.3\left(4-1\right)+...+2006+2007\left(2008-2005\right)\)\(3\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2005.2006.2007}\right)x=2\left(1.2\left(3-0\right)+2.3+...+2006+2007\right)\)
\(2\left(1.2.3+2.3.4-1.2.3+...+2006+2007.2008-2005.2006.2007\right)\)
Đến đây rồi tự làm tiếp đi nhé
1) Đặt \(A=1.2+2.3+3.4+....+98.99\)
Ta có:\(3A=3.\left(1.2+2.3+3.4+....+98.99\right)\)
\(3A=1.2.3+2.3.3+3.4.3+....+98.99.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+....+98.99.\left(100-97\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+98.99.100-97.98.99\)
\(3A=98.99.100\Rightarrow A=\frac{98.99.100}{3}=323400\)
Ta có:\(\frac{A.y}{1}=184800\Rightarrow y=184800:323400=\frac{4}{7}\)
2)Đặt \(A=\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\right).1428+185,8\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{37.38.39}\)
Tổng quát:\(\frac{2}{\left(a-1\right)a\left(a+1\right)}=\frac{1}{\left(a-1\right)a}-\frac{1}{a\left(a+1\right)}\)
Ta có:
\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+.....+\frac{2}{37.38.39}\)
\(2B=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+\left(\frac{1}{3.4}-\frac{1}{4.5}\right)+...+\left(\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(2B=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\Rightarrow B=\frac{370}{741}:2=\frac{185}{741}\)
Khi đó \(A=\frac{185}{741}.1428+185,8=...........\) (tự tính ra)
(*)số ko đẹp mấy