Tìm các chữ số a,b,c khác 0 thỏa mãn abbc=ab.ac.7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(abbc< 10000\)
\(\Rightarrow ab.ac.7< 10000\)
\(\Rightarrow ab.ac< 1429\)
\(\Rightarrow a0.a0< 1429\) (\(a0\) là số có 2 chữ số kết thúc bằng \(0\))
\(\Rightarrow a0< 38\)
\(\Rightarrow a\le3\)
+) Với \(a=3\) ta có :
\(3bbc=3b.3c.7\)
Ta thấy : \(3b.3c.7>30.30.7=6300>3bbc\rightarrow\) \(loại\)
+)Với \(a=2\) ta có :
\(2bbc=2b.2c.7\)
Ta thấy : \(2b.2c.7>21.21.7=3087>2bbc\rightarrow loại\) ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1)
\(\Rightarrow a\) chỉ có thể là \(1\)
Ta có : \(1bbc=1b.1c.7\)
có \(1bbc>1b.100\Rightarrow1c.7>100\Rightarrow1c>14\Rightarrow c\ge5\)
lại có :
\(1bbc=100.1b+bc< 110.1b\) (vì \(bc< 1b.10\))
\(\Rightarrow1c.7< 110\Rightarrow1c< 16\Rightarrow c< 6\)
vậy c chỉ có thể = 5
ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105
<=> 100.1b + b5 = 1b.105b
<=> b5 = 5.1b
<=> 10b + 5 = 5.(10+b)
=> b = 9
vậy số abc là 195
~ Chúc bn học tốt ~
abbc=ab *ac*7
ab*100+bc=ab*ac*7
bc=ab*ab*7-ab*100
bc=ab * ( ac * 7 - 100)
ac * 7 - 100 = bc/ab
mà o < bc/ab < 10
suy ra 0 < ac * 7 -100 < 10
suy ra 100 < ac * 7 < 110
suy ra 100/7< ac < 110/7
suy ra 14< ac<16
suy ra ac =15
a=1
c=5
Thay vào ac *7 - 100= bc/ab
15*7-100=b5/1b
5 =b5/1b
suy ra 1b * 5 = b5
( 10 + b ) * 5 = 10b + 5
( 10 * 5 ) + ( b * 5)=10b + 5
50 + ( b* 5) = 10b + 5
50-5=10*b - 5b
45=5b
suy ra b=9
Vậy a=1
b=9
c=5
Ta có:10^28+8=100...008 (27 chữ số 0)
Xét 008 chia hết cho 8 =>10^28+8 chia hết cho 8 (1)
Xét 1+27.0+8=9 chia hết cho 9=>10^28+8 chia hết cho 9 (2)
Mà (8,9)=1 (3).Từ (1),(2),(3) =>10^28+8 chia hết cho (8.9=)72
Nếu chưa học thì giải zầy:
10^28+8=2^28.5^28+8
=2^3.2^25.5^28+8
=8.2^25.5^28+8 chia hết cho 8
Mặt khác:10^28+8 chia hết cho 9(chứng minh như cách 1) và(8,9)=1
=>10^28+8 chia hết cho 8.9=72
abcdeg = ab . 10000 + cd .100 + eg
= (ab . 9999 + cd . 99) +( ab + cd + eg)
= 11. (ab . 909 + cd . 9) +( ab + cd + eg)
Ta thấy 11. (ab . 909 + cd . 9) chia hết cho 11
mà theo bài ra ab + cd + eg
Chia hết cho 11
Vậy nên: 11. (ab . 909 + cd . 9) +( ab + cd + eg) hay abcdeg
Vì 11\(⋮\)11
Vậy...
Vậy
Có abbc < 10.000
=> ab.ac.7 < 10000
=> ab.ac < 1429
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0)
=> a0 < 38
=> a <= 3
+) Với a = 3 ta có
3bbc = 3b.3c.7
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại
+)Với a = 2 ta có
2bbc = 2b.2c.7
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1)
=> a chỉ có thể = 1
Ta có 1bbc = 1b.1c.7
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10)
=> 1c.7 < 110 => 1c < 16 => c < 6
vậy c chỉ có thể = 5
ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105
<=> 100.1b + b5 = 1b.105b
<=> b5 = 5.1b
<=> 10b + 5 = 5.(10+b)
=> b = 9
vậy số abc là 195