K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2021

\(x^2y^2+xy+1=x^2\)

\(\Leftrightarrow4x^2y^2+4xy+4=4x^2\)

\(\Leftrightarrow\left(2xy+1\right)^2+3=4x^2\)

\(\Leftrightarrow\left(2x-2xy-1\right)\left(2x+2xy+1\right)=3=1.3=\left(-1\right).\left(-3\right)\)

TH1: \(\left\{{}\begin{matrix}2x-2xy-1=1\\2x+2xy+1=3\end{matrix}\right.\Leftrightarrow...\)

TH2: \(\left\{{}\begin{matrix}2x-2xy-1=3\\2x+2xy+1=1\end{matrix}\right.\Leftrightarrow...\)

TH3: \(\left\{{}\begin{matrix}2x-2xy-1=-1\\2x+2xy+1=-3\end{matrix}\right.\Leftrightarrow...\)

TH4: \(\left\{{}\begin{matrix}2x-2xy-1=-3\\2x+2xy+1=-1\end{matrix}\right.\Leftrightarrow...\)

14 tháng 7 2021

\(x^3+y^3=5+x^2y+xy^2\Rightarrow x^3+y^3-\left(x^2y+xy^2\right)=5\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=5\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)^2=5\)

Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\5>0\end{matrix}\right.\Rightarrow x+y>0\)

Lại có \(\left\{{}\begin{matrix}\left(x-y\right)^2\in N\\\left(x-y\right)^2< 5\end{matrix}\right.\) và \(\left(x-y\right)^2\) là số chính phương

\(\Rightarrow\left(x-y\right)^2=1\Rightarrow\left\{{}\begin{matrix}x+y=5\\x-y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

14 tháng 7 2021

Vì sao \(\left(x-y\right)^2< 5\) vậy bạn? Nếu nó =5 thì sao ạ? Cảm ơn ạ.

17 tháng 11 2018

\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)

\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)

17 tháng 11 2018

2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)

TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)

TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)

TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

Vậy......

24 tháng 8 2017

>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0

>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)

có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong

6 tháng 4 2020

PT \(\Leftrightarrow\left(y-5\right)x^2-\left(y-1\right)x+y-1=0\)

Với y=5 thì ta không tìm được x thỏa mãn

Với \(y\ne5\), ta có

\(\Delta=-3y^2+26-19\)

Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow1\le x\le7\)

Từ đó ta thế các giá trị của y vào phương trình tìm x (Bạn tự giải)

6 tháng 1 2018

Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm 

6 tháng 1 2018

sorry @Thắng Hoàng mình nhầm đề, phải là

\(x^2y^2-xy=x^2+2y^2\)

13 tháng 3 2021

\(PT\Leftrightarrow y\left(x^2-2x-1\right)=x^2+2x-1\).

Từ đó \(x^2-2x-1\vdots x^2+2x-1\)

\(\Leftrightarrow4x⋮x^2+2x-1\) (1)

\(\Rightarrow4\left(x^2+2x-1\right)-4x^2⋮x^2+2x-1\)

\(\Leftrightarrow8x-4⋮x^2+2x-1\) (2)

Từ (1), (2) suy ra \(8⋮x^2+2x-1\).

Đến đây bạn xét TH.