Cho ab+bc+ca=0 với a, b, c thuộc Q. CM: A=(a^2+1).(b^2+1).(c^2+1) là bình phương của 1 số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab+bc+ac=1\)
\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)
\(=\left(ab+bc+ac+a^2\right)\left(ab+bc+ac+b^2\right)\left(ab+bc+ca+c^2\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)
\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Thay ab+bc+ac = 1 và Q ta được :
\(Q=\left(a^2+ab+ac+bc\right)\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\) là bình phương của một số hữu tỉ (đpcm)
Ta có :
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)
\(=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)
\(=\left[\left(a^2+ab\right)+\left(bc+ca\right)\right]\left[\left(b^2+ab\right)+\left(bc+ca\right)\right]\left[\left(c^2+bc\right)+\left(ab+ca\right)\right]\)
\(=\left(a+c\right)\left(a+b\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(b+c\right)\)
\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Vậy ...
thay 1 bởi ab+bc+ca
ta có :Q=\(\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)}\)
ta thấy \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
\(b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)
\(c^2+ab+bc+ca=\left(a+c\right)\left(b+c\right)\)
=> Q= \(\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)=\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là một số hữu tỉ vì a,c,b là các số hữu tỉ
Với ab + ac + bc = 1
Ta có :
a2+1=a2+ab+ac+bc=(a2+ab)+(ac+bc)
=a(a+b)+c(a+b)=(a+c)(a+b)
Tương tự, ta có:
b2+1=(b+a)(b+c)
c2+1=(c+a)(c+b)
Do đó:
(a2+1)(b2+1)(c2+1)=(a+c)(a+b)(b+c)(b+a)(c+a)(c+b)
=(a+b)2(a+c)2(b+c)2=|(a+b)(a+c)(b+c)|
Do a, b, c là số hữu tỷ, do đó :
|(a+b)(a+c)(b+c)| là số hữu tỷ. (đpcm)
Thay 1= 4(ab+bc+ca), Ta có:
\(\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)
\(=4\left(ab+bc+ca+a^2\right).4\left(ab+bc+ca+b^2\right).4\left(ab+bc+ca+c^2\right)\)
\(=64.\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)\)
\(=64\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
\(=\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Mà a, b, c là số hữu tỉ
\(\Rightarrow\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)là bình phương một số hữu tỉ
\(\Rightarrow\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)là bình phương một số hữu tỉ
3/ Ta có:
\(x+y+z=0\)
\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)
\(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
Ta có:
\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)
\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)
\(=-ax^2-by^2-cz^2\)
\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)
\(\Leftrightarrow ax^2+by^2+cz^2=0\)
1/ Đặt \(a-b=x,b-c=y,c-z=z\)
\(\Rightarrow x+y+z=0\)
Ta có:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
Lời giải:
$a+b+c=abc$
$\Rightarrow a(a+b+c)=a^2bc$
$\Leftrightarrow a^2+ab+ac+bc=bc(a^2+1)$
$\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}$
Tương tự với $b^2+1, c^2+1$. Khi đó:
$Q=\frac{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}{bc.ac.ab}=[\frac{(a+b)(b+c)(c+a)}{abc}]^2$ là bình phương 1 số hữu tỉ.
Ta có đpcm.
Ta có : \(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)(thay từ giả thiết)
Tương tự : \(b^2+1=\left(b+c\right)\left(b+a\right)\); \(c^2+1=\left(c+b\right)\left(c+a\right)\)
Suy ra : \(Q=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{\left(a+b\right)^2.\left(b+c\right)^2.\left(c+a\right)^2}=\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\)Vì a,b,c là các số hữu tỉ nên suy ra Q là số hữu tỉ.
thay 1 bởi ab+bc+ca
ta có :
Q=\(\sqrt{\left(a^2+ab+bc+Ca\right)\left(b^2+bc+ab+ca\right)\left(c^2+ab+bc+ca\right)}\)
ta thấy : \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
\(b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)
\(c^2+ab+bc+ca=\left(a+c\right)\left(b+c\right)\)
=> Q=\(\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)=\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là số hữu tỉ vì a,b,c là các số hữu tỉ
Lời giải:
Sửa lại điều kiện $ab+bc+ac=1$ mới đúng nhé bạn
Thay $1=ab+bc+ac$ ta có:
$A=(a^2+ab+bc+ac)(b^2+ab+bc+ac)(c^2+ab+bc+ac)$
$=(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)$
$=[(a+b)(b+c)(c+a)]^2$
Vì $a,b,c\in\mathbb{Q}$ nên $(a+b)(b+c)(c+a)\in \mathbb{Q}$
Do đó $A$ là bình phương của số hữu tỉ.
Ta có đpcm.