|1/2-2x|+2/3=7/3
giúp mình với !!11!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left|2x+\dfrac{1}{2}\right|=0\\ \Leftrightarrow2x+\dfrac{1}{2}=0\\ \Leftrightarrow2x=-\dfrac{1}{2}\\ \Leftrightarrow x=-\dfrac{1}{4}\\ b,\left|3x+\dfrac{3}{4}\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{3}{4}=3\\3x+\dfrac{3}{4}=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{9}{4}\\3x=-\dfrac{15}{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{5}{4}\end{matrix}\right.\)
\(x^2+4x+5=2\sqrt{2x+3}\)
\(ĐK:x\ge-\dfrac{3}{2}\)
\(pt\Leftrightarrow(2x+3-2\sqrt{2x+3}+1)+x^2+2x+1=0\)
\(\Leftrightarrow\left(\sqrt{2x+3}-1\right)^2=-\left(x+1\right)^2\)
Vì \(\left(\sqrt{2x+3}-1\right)^2\ge0;-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}(\sqrt{2x+3}-1)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x+3}-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x+3}=1\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)}\)
\(\Leftrightarrow x=-1\left(tm\right)\)
Vậy, pt có nghiệm duy nhất là x=-1
Bài 1:
a) \(x\left(x+1\right)+x\left(x-1\right)-2x^2\)
\(=x^2+x+x^2-x-2x^2\)
\(=2x^2-2x^2\)
\(=0\)
b) \(\left(x+2\right)\left(x^2-x+1\right)-\left(x-2\right)\left(x^2+x+1\right)\)
\(=x^3-x^2+x+2x^2-2x+2-x^3-x^2-x+2x^2+2x+2\)
\(=\left(x^3-x^3\right)+\left(-x^2+2x^2-x^2+2x^2\right)+\left(x-2x-x+2x\right)+\left(2+2\right)\)
\(=2x^2+4\)
c) \(\left(3-x\right)^2+2\left(x-3\right)\left(x+7\right)+\left(x+7\right)^2\)
\(=\left(x-3\right)^2+2\left(x-3\right)\left(x+7\right)+\left(x+7\right)^2\)
\(=\left[\left(x-3\right)+\left(x+7\right)\right]^2\)
\(=\left(x-3+x+7\right)^2\)
\(=\left(2x+4\right)^2\)
Theo mình thì câu b có lẽ là tổng của 3 bình phương.
\(\left(x-5\right)^2=\left(18\dfrac{1}{3}:5\right).\dfrac{11}{3}\)
\(\Leftrightarrow\left(x-5\right)^2=\dfrac{55}{3}.\dfrac{1}{5}.\dfrac{11}{3}\)
\(\Leftrightarrow\left(x-5\right)^2=\dfrac{121}{9}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=\dfrac{11}{3}\\x-5=-\dfrac{11}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{26}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
\(=-7\cdot\left[16+\left(-36\right):\left(-9\right)\right]+125=-77\cdot20+125=-140+125=-15\)
<=>\(\left|\dfrac{1}{2}-2x\right|=\dfrac{5}{3}< =>\left[{}\begin{matrix}\dfrac{1}{2}-2x=\dfrac{5}{3}\\\dfrac{1}{2}-2x=\dfrac{-5}{3}\end{matrix}\right.< =>\left[{}\begin{matrix}2x=\dfrac{-7}{6}\\2x=\dfrac{13}{6}\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{-7}{12}\\x=\dfrac{13}{12}\end{matrix}\right.\)
\(\left|\dfrac{1}{2}+2x\right|+\dfrac{2}{3}=\dfrac{7}{3}\)
\(\left|\dfrac{1}{2}+2x\right|=\dfrac{7}{3}-\dfrac{2}{3}=\dfrac{5}{3}\)
⇔\(\left[{}\begin{matrix}\dfrac{1}{2}+2x=\dfrac{5}{3}\\\dfrac{1}{2}+2x=-\dfrac{5}{3}\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{7}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
Vậy ...