Cho tam giác ABC cân tại A và đường cao AH. Vẽ HD vuông góc với AC. Nối BD. Từ M là trung điểm của HD vẽ dg thẳng // với BC cắt BD tại E,CD tại F.
CM a)ME=MF
b)AM vuông góc với HF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔDMC vuông tại M và ΔDMH vuông tại M có
DM chung
MH=MC
=>ΔDMC=ΔDMH
Xét ΔAHC có
M là trung điểmcủa CH
MD//AH
=>D là trung điểm của AC
=>DH//AB
c: Xét ΔABC có
AH,BD là trung tuyến
AH cắt BD tại G
=>G là trọng tâm
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔDMH vuông tại M và ΔDMC vuông tại M có
DM chung
MH=MC
=>ΔDMH=ΔDMC
=>góc DHC=góc DCH
=>góc DHC=góc ABH
=>DH//AB
c: Xét ΔAHC có
M là trung điểm của CH
MD//AH
=>D là trung điểm của AC
Xét ΔABC có
BD,AH là đường cao
BD cắt AH tại G
=>G là trọng tâm
A, TA CÓ: AH vuông góc với CB, tam giác ABC cân tại A=>AH là đường trung tuyến của ABC=>CH=CB
Xét tam giác CDB có MH // DB, CH=CB =>M trung điểm của CD (T/C đường tb của tam giác)
b, xét tam giác CDB có CM=MD, DN=NB=>MN là đường tb của tam giác CDB => MN // CB
MÀ AH vuông góc với CB,=>MN vuông góc với AH mà E thuộc MN=>ME vuông góc với AH
CÒN PHẦN C THÌ MK KO BIẾT. SORRY NHA
a: Ta có: H và D đối xứng với nhau qua AB
nên AH=AD; BH=BD
=>ΔHAD cân tại A
=>AB là phân giác của góc HAD(1)
Ta có H và E đối xứngvới nhau qua AC
nên AH=AE; CH=CE
=>ΔAHE cân tại A
=>AC là phân giác của góc HAE(2)
Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ
=>D,A,E thẳng hàng
b: Xét ΔAHB và ΔADB có
AH=AD
BH=BD
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: góc ADB=90 độ
=>BD vuông góc với DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
HC=EC
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: góc AEC=90 độ
=>CE vuông góc với ED(4)
Từ (3) và (4) suy ra BDEC là hình thang vuông
c: ED=AE+AD
=AH+AH=2AH
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó: ΔDHE vuông tại H
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Xét ΔAMH có
AE là đường cao
AE là đường trung tuyến
Do đó: ΔAMH cân tại A
hay AM=AH(1)
c: Xét ΔANH có
AD là đường cao
AD là đường trung tuyến
Do đó: ΔANH cân tại A
hay AH=AN(2)
Từ (1) và (2) suy ra AM=AN
hay ΔAMN cân tại A