giải bpt :
<5x+1>/<x+3>-<3x-2>/<x-1> lớn hơn 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3(x-2)(x+2) < 3x2 + x
3(x2 + 2x - 2x - 4 ) < 3x2 + x
<=> 3x2 + 6x - 6x - 12 < 3x2 + x
<=> 3x2 + 6x - 6x - 3x2 - x < 12
<=> x > -12
Vậy bpt có nghiệm là x > -12.
b) ( x+4 )(5x-1) > 5x2 + 16x + 2
<=> 5x2 - x + 20x - 4 - 5x2 - 16x - 2 > 0
<=> 5x2 - x + 20x - 5x2 - 16x > 2 + 4
<=> 3x > 6
<=> x > 2
Vậy btp có nghiệm là x > 2
Giải:
a) \(3\left(x-2\right)\left(x+2\right)< 3x^2+x\)
\(\Leftrightarrow3\left(x^2-4\right)< 3x^2+x\)
\(\Leftrightarrow3x^2-12< 3x^2+x\)
\(\Leftrightarrow-12< x\)
\(\Leftrightarrow x>-12\)
Vậy ...
b) \(\left(x+4\right)\left(5x-1\right)>5x^2+16x+2\)
\(\Leftrightarrow5x^2+20x-x-4>5x^2+16x+2\)
\(\Leftrightarrow5x^2+19x-4>5x^2+16x+2\)
\(\Leftrightarrow3x-4>2\)
\(\Leftrightarrow3x>6\)
\(\Leftrightarrow x>2\)
Vậy ...
b, \(\frac{5x+1}{x+3}-\frac{3x-2}{x-1}=\frac{5.\left(x+3\right)-14}{x+3}-\frac{3\left(x-1\right)+1}{x-1}=5-\frac{14}{x+3}-3+\frac{1}{x-1}=2+\left(\frac{1}{x-1}-\frac{14}{x+3}\right)=2+\left(\frac{x+3-14x+14}{x^2-x+3x-3}\right)=2+\left(\frac{17-13x}{x^2+2x-3}\right)>2\)
| 2-4x | = 4x-2
<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)
<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)
=> \(S=\left\{\frac{1}{2};\infty\right\}\)
2x-7> 3(x-1)
<=>2x-7>3x-3
<=>2x-3x>-3+7
<=>-x>4
<=>x<4
=>S={x/x<4}
1-2x<4(3x-2)
<=>1-2x<12x-8
<=>-2x-12x<-8-1
<=>-14x<-9
<=>x>\(\frac{9}{14}\)
=>S={\(\frac{9}{14}\)}
-3x+2|-4 -x|> 0
<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)
<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)
=>S={x/x<3;x/x<\(\frac{1}{4}\)}
4x-1|x-2|< 0
<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)
<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)
=>S={x/x<\(\frac{-1}{3}\);x/x<1}
Bài làm:
a) Ta có: \(x^2+4\ge4>0\left(\forall x\right)\)
=> \(5x-2\le0\)
<=> \(5x\le2\)
=> \(x\le\frac{2}{5}\)
b) Ta có: \(x^2-2x+9=\left(x^2-2x+1\right)+8=\left(x-1\right)^2+8\ge8>0\left(\forall x\right)\)
=> \(3x+4\ge0\)
<=> \(3x\ge-4\)
=> \(x\ge-\frac{4}{3}\)
\(\frac{5x-2}{x^2+4}\le0\)
Vì x2 + 4 > 0 ∀ x
Nên ta chỉ cần xét 5x - 2 ≤ 0
<=> 5x ≤ 2
<=> x ≤ 2/5
Vậy nghiệm của bất phương trình là x ≤ 2/5
\(\frac{3x+4}{x^2-2x+9}\ge0\)
Ta có : x2 - 2x + 9 = ( x2 - 2x + 1 ) + 8 = ( x - 1 )2 + 8 ≥ 8 > 0 ∀ x
Nên ta chỉ cần xét 3x + 4 ≥ 0
<=> 3x ≥ -4
<=> x ≥ -4/3
Vậy nghiệm của bất phương trình là x ≥ -4/3