K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2022

Tham khảo( bỏ câu C đị ạ)

undefined

18 tháng 5 2022

refer

undefined

28 tháng 5 2021

Do I là trực tâm của tam giác KAB nên K, I, H thẳng hàng.

Tứ giác AMIH nội tiếp nên \(\widehat{MHI}=\widehat{MAI}\).

Tương tự, \(\widehat{NHI}=\widehat{NBI}\).

Lại có \(\widehat{MAI}=\widehat{NBI}=90^o-\widehat{AKB}\) nên \(\widehat{MHI}=\widehat{NHI}\).

Vậy HK là phân giác của góc MHN.

26 tháng 4 2018

a, Ta có:  E C A ^ + O C A ^ = 90 0 và A C H ^ + O A C ^ = 90 0

mà  O A C ^ = O C A ^  (do tam giác AOC cân tại O)

Suy ra E C A ^ = A C H ^

Khi đó  E A C ^ = H A C ^  (cùng lần lượt phụ với E C A ^ và  A C H ^ ), ta có đpcm

b, Chứng minh tương tự  suy ra BC là phân giác của  F B H ^

Từ đó, chứng minh được BC vuông góc HF (1)

Tam giác ABC có trung tuyến OC = 1 2 AB. Suy ra tam giác ABC vuông tại C , tức là BC vuông góc với AC (2)

Từ (1),(2) suy ra đpcm

c, Ta có : AE+BF =2OC=2R không đổi

d, Ta có   A E . B F ≤ A E + B F 2 4 = R 2

suy ra AE.BF lớn nhất =  R 2 óAE=BF=R

Điều này xẩy ra khi C là điểm chính giữa cung AB

14 tháng 11 2015

BẠn tự vẽ hình nhé.

Gọi P là giao điểm của BC với Ax

-Vì O là TĐ của AB và OM//BP =>M là TĐ của AP

Áp dụng ĐL talets

 Vì CIH // PMA => \(\frac{BC}{BP}=\frac{BI}{BM}=\frac{CI}{PM}\) VÀ \(\frac{BI}{BM}=\frac{BH}{BA}=\frac{IH}{MA}\)

=>\(\frac{CI}{PM}=\frac{IH}{MA}\)Do PM=MA => CI = IH

18 tháng 12 2021

Đề bài đâu có cho OM//BP đâu nhỉ?

15 tháng 12 2023

1: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

=>AEHF là tứ giác nội tiếp

=>A,E,H,F cùng thuộc một đường tròn

2: Kẻ tiếp tuyến Ax tại A của (O)

Xét (O) có

\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB

nên \(\widehat{xAB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)

Xét (O) có

\(\widehat{ACB}\) là góc nội tiếp chắn cung BA

Do đó: \(\widehat{ACB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)

=>\(\widehat{xAB}=\widehat{ACB}\left(1\right)\)

Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AEF}=\widehat{AHF}\)

mà \(\widehat{AHF}=\widehat{ACB}\left(=90^0-\widehat{HAC}\right)\)

nên \(\widehat{AEF}=\widehat{ACB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{xAB}=\widehat{AEF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//EF

Ta có: Ax//EF

OA\(\perp\)Ax

Do đó: OA\(\perp\)EF