Bài toán. Cho nửa đường tròn tâm O đường kính AB. Gọi C là điểm nằm trên nửa đường tròn (C khác A, B). Gọi H là hình chiếu vuông góc của C trên AB; D là điểm đổi xứng với A qua C; I là trung điểm CH; J là trung điểm DH.
a) Chứng minh $\angle CIJ=\angle CBH$ (đã làm)
b) Chứng minh tam giác CJH đồng dạng với HIB (đã làm)
c) Gọi E là giao điểm của HD và BI. Chứng minh $HE\cdot HD=HC^2.$
d) Xác định vị trí của điểm C trên nửa đường tròn để $AH+CH$ đạt Max.
Ps: Chán hoc24 phiên bản mới ghê, em đăng câu hỏi hơi dài (do có những thảo luận) mà hoc24 tự ý rút gọn làm mất nội dung câu hỏi. Đăng ảnh thì không hiển thị. Em phải đăng lại lần này là lần thứ 3.