Số tự nhiên n thỏa mãn 1/16 < (1/2)n < 1/4 là: ................
toán này hơi khó nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do đó, (3) là kết luận sai
Từ (1) và (2) cho thấy 2n + 6 chia hết cho n
Vì 2n chia hết cho n nên 6 chia hết cho n
Mà \(n\in N\Rightarrow n\in\left\{1;2;3;6\right\}\)
Lại có: m + 7n = 2n + 5 + 7n = 9n + 5 (1)
Lần lượt thay các giá trị tìm được của n vào (1) ta thấy n = 2 thỏa mãn
=> m = 2.2 + 5 = 9
Vậy m = 9; n = 2 thỏa mãn đề bài
?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????////////????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
ĐỀ SAI
CÂU 1:LŨY THỪA SAO LẠI VIẾT DƯỚI DẠNG SỐ TỰ NHIÊN - ĐÁP ÁN 2^3.3+2^4
CÂU 2:KO CÓ ĐÁO ÁN ĐÚNG - ĐÁP ÁN 27
1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d \(\in\) { 2; 4 }. (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\).
Vì vậy d = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.
\(\frac{1}{16}<\left(\frac{1}{2}\right)^n<\frac{1}{4}\)
\(\left(\frac{1}{2}\right)^4<\left(\frac{1}{2}\right)^n<\left(\frac{1}{2}\right)^2\)
2 < n < 4 => n = 3