Cho đường tròn (O;R), đường kính AB. Trên đoạn thẳng OA lấy điểm M bất kỳ (M không trùng với A và O) Đường thẳng qua M vuông góc với AB cắt đường tròn (O) tại C. Gọi D là điểm chính giữa cung AB (c,D nằm khác phía đới với AB), gợi I là trung điểm của dây cung BC
a. Chứng minh tứ giác MCIO nội tiếp
b. Xác định vị trí điểm M để diện tích tam giác MCD lớn nhất
o A B M C D I
a. Do I là trung điểm dây cung BC nên ta có \(\widehat{OIC}=90^0\). Xét tứ giác MOCI có \(\widehat{CMO}+\widehat{CIO} =90^0+90^0=180^0\) nên tứ giác MOIC là tứ giác nội tiếp đường tròn đường kính CO.
b. Do D là điểm chính giữa cung AB nên \(DO \perp AB\), mà \(CM \perp AB\) nên \(DO \parallel CM\). Từ đó dễ thấy \(dtCMD=dtCMO\).
\(\frac{1}{2}CM.MO\le\frac{1}{2}\frac{CM^2+OM^2}{2}=\frac{1}{4}OC^2=\frac{R^2}{4}\)
Vậy diện tích tam giác MCD lớn nhất bằng \(\frac{R^2}{4}\) khi \(OM=\frac{R}{\sqrt{2}}\)
Chúc em học tốt ^^