K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

tìm a,b thuoc z để ab-2a-b=3

13 tháng 12 2018

ĐKXĐ bạn tự xét nhé

\(M=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}-\frac{2a}{a^3-a^2+a-1}\right)\)

\(M=\left(\frac{a^2+1}{a^2+1}+\frac{a}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{a^2\left(a-1\right)+\left(a-1\right)}\right)\)

\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{\left(a^2+1\right)\left(a-1\right)}\right)\)

\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2-2a+1}{\left(a^2+1\right)\left(a-1\right)}\right)\)

\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{\left(a-1\right)^2}{\left(a^2+1\right)\left(a-1\right)}\right)\)

\(M=\frac{\left(a^2+a+1\right)\left(a^2+1\right)\left(a-1\right)}{\left(a^2+1\right)\left(a-1\right)^2}\)

\(M=\frac{a^2+a+1}{a-1}\)

Để M thuộc Z thì \(a^2+a+1⋮a-1\)

\(\Leftrightarrow a^2-a+2a-2+3⋮a-1\)

\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)+3⋮a-1\)

\(\Leftrightarrow\left(a-1\right)\left(a+2\right)+3⋮a-1\)

Mà \(\left(a-1\right)\left(a+2\right)⋮a-1\)

\(\Rightarrow3⋮a-1\)

\(\Rightarrow a-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

\(\Rightarrow a\in\left\{2;4;0;-2\right\}\)

Để M = 7 thì :

\(\frac{a^2+a+1}{a-1}=7\)

\(\Leftrightarrow a^2+a+1=7\left(a-1\right)\)

\(\Leftrightarrow a^2+a+1=7a-7\)

\(\Leftrightarrow a^2-6a+8=0\)

\(\Leftrightarrow a^2-2a-4a+8=0\)

\(\Leftrightarrow a\left(a-2\right)-4\left(a-2\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-2=0\\a-4=0\end{cases}\Rightarrow\orbr{\begin{cases}a=2\\a=4\end{cases}}}\)

Để M > 0 thì :

\(\frac{a^2+a+1}{a-1}>0\)

Vì \(a^2+a+1>0\forall a\), do đó để M > 0 thì : \(a-1>0\Leftrightarrow a>1\)

13 tháng 12 2018

Chứng minh \(a^2+a+1>0\):

Đặt \(B=a^2+a+1\)

\(B=a^2+2\cdot a\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(B=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)

\(\Rightarrow B\ge0+\frac{3}{4}=\frac{3}{4}>0\)

\(\Rightarrow B>0\left(đpcm\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a+\frac{1}{2}=0\Leftrightarrow a=\frac{-1}{2}\)

13 tháng 4 2017

Very easy, mình giúp 1 câu, các câu còn lại bạn tự làm đi

a,\(\frac{27a-37}{4-5a}=2\Rightarrow27a-37=8-10a\Rightarrow37a=45\Rightarrow a=\frac{45}{37}\)

21 tháng 3 2016

a) n\(\in\){1;2;4;5}

b)n\(\ne3\)và n\(\in\)Z

k nha bạn

21 tháng 3 2016

a)để A thuộc Z hay a là số nguyên

=>n-1 chia hết n-3

<=>(n-1)-2 chia hết n-3

=>2 chia hết n-3

=>n-3\(\in\){1,-1,2,-2}

=>n\(\in\){4,2,5,1}

b)vì mẫu số của ps luôn luôn\(\ne0\) =>n\(\ne\)3 và 0;n\(\in\)Z

2 tháng 1 2022

thoi di