cho pt x\(^2\)-2(k+2)x+k\(^2\)+2k-7=0
a.giải pt khi k=-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^2-2\right)\left(k-1\right)x+2k-5=0\)
\(\Delta=\left(k-1\right)^2-2k+5\)
\(=k^2-4x+6=\left(k-2\right)^2+2>0\)
=> PT luôn có nghiệm với mọi k
Anh Phuong
Bạn bấm mode-5-3 để tìm min trong trường hợp này ko áp dụng được, vì nếu phân tích theo mode 5-3 \(2k^2+4k-3=2\left(k+1\right)^2-5\ge-5\) thì dấu "=" xảy ra khi \(k=-1\) ko thỏa mãn điều kiện delta \(k\ge\frac{7}{4}\)
Theo lý thuyết hàm bậc 2 thì \(2k^2+4k-2\) đồng biến khi \(k\ge-1\) nghĩa là với \(k\ge\frac{7}{4}\) thì chắc chắn A min sẽ xảy ra khi \(k=\frac{7}{4}\)
Thay \(k=\frac{7}{4}\) vào tính được \(A=\frac{81}{8}\)
Do đó ta thêm bớt: \(A=\left(2k^2+4k-\frac{105}{8}\right)+\frac{81}{8}\)
Và bây giờ chỉ việc phân tích ngoặc đầu thành nhân tử bằng máy tính dễ dàng, máy tính cho 2 nghiệm \(\frac{7}{4};-\frac{15}{4}\), do đó:
\(A=2\left(k-\frac{7}{4}\right)\left(k+\frac{15}{4}\right)+\frac{81}{8}\)
Do \(k\ge\frac{7}{4}\Rightarrow\left\{{}\begin{matrix}k-\frac{7}{4}\ge0\\k+\frac{15}{4}>0\end{matrix}\right.\) \(\Rightarrow2\left(k-\frac{7}{4}\right)\left(k+\frac{15}{4}\right)\ge0\)
\(\Rightarrow A\ge0+\frac{81}{8}=\frac{81}{8}\)
Khi có điều kiện delta, thì luôn phải chú ý điểm rơi xem có thỏa mãn điều kiện hay ko, nếu không thì phải tìm cách tách riêng như trong bài này, nếu ko kết quả sẽ sai hết.
\(\Delta=4k^2+4k+1-4k^2-8=4k-7\ge0\Rightarrow k\ge\frac{7}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2k+1\\x_1x_2=k^2+2\end{matrix}\right.\)
a/ Kết hợp Viet và đề bài ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=2k+1\\x_1=2x_2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{2\left(2k+1\right)}{3}\\x_2=\frac{2k+1}{3}\end{matrix}\right.\)
\(\Rightarrow\frac{2\left(2k+1\right)}{3}.\frac{\left(2k+1\right)}{3}=k^2+2\Leftrightarrow2\left(2k+1\right)^2=9\left(k^2+2\right)\)
\(\Leftrightarrow k^2-8k+16=0\Rightarrow k=4\)
b/ \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(2k+1\right)^2-2\left(k^2+2\right)=2k^2+4k-3\)
\(=2\left(k-\frac{7}{4}\right)\left(k+\frac{15}{4}\right)+\frac{81}{8}\ge\frac{81}{8}\)
\(\Rightarrow A_{min}=\frac{81}{8}\) khi \(k=\frac{7}{4}\)
Do \(x_1\) và \(x_2\) là nghiệm của phương trình . Theo định lí vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2k+4\\x_1x_2=-2k-6\end{matrix}\right.\)
\(A=\left(x_1-x_2\right)^2=x_1^2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(2k+4\right)^2-4\left(-2k-6\right)\)
\(=4k^2+16k+16+8k+24\)
\(=4k^2+24k+40\)
\(=4k^2+24k+36+4\)
\(=\left(2k+6\right)^2+4\ge4\)
Vậy GTNN của A là 4 khi \(\left(2k+6\right)^2=0\Leftrightarrow k=-3\)
ta có (1)*2=2x2 -10x+2k
gọi nhiệm pt ( 1) là x1 , pt(2) là x2
=> (1):2x12 -10x1+2k=0 ;(2):x22-7x2+2k=0 mà :x2=2x1
=> (1):2x12 -10x1+2k=0(3) ;(2):x12-7x1+2k=0 (4)
ta có (3)-(4)=x12-3x1 =0 => x1(x1-3)=0 =>x1=0 hoặc 3
thay vô (1) ta được :k=0 hoặc 6
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
\(\Delta\)' = (k+3)2 - (2k -1) = k2 + 4k + 10 = (k2 + 4k + 4) + 6 = (k+2)2 + 6 > 0 với mọi k
=> PT đã cho luôn có 2 nghiệm phân biệt x1; x2.
Theo hệ thức Vi - et có:
x1 + x2 = 2(k+3) ; x1.x2 = 2k - 1
x1.x2 = 2k - 1 => 2k = x1.x2 + 1
=> x1 + x2 = 2(k+3) = 2k + 6 = x1.x2 + 1 + 6 = x1.x2 + 7
Vậy x1 + x2 = x1.x2 + 7 Không phụ thuộc vào k
a: 2k^2+kx-10=0
Khi x=2 thì ta sẽ có: 2k^2+2k-10=0
=>k^2+k-5=0
=>\(k=\dfrac{-1\pm\sqrt{21}}{2}\)
b: Khi x=-2 thì ta sẽ có:
\(\left(-2k-5\right)\cdot4-\left(k-2\right)\cdot\left(-2\right)+2k=0\)
=>-8k-20+2k-4+2k=0
=>-4k-24=0
=>k=-6
c: Theo đề, ta có:
9k-3k-72=0
=>6k=72
=>k=12
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
Thay x = 2 là nghiệm của pt, ta được:
\(\left(2.2+1\right)\left(9.2+2k\right)-5\left(2+2\right)=40\)
\(\Leftrightarrow5\left(18+2k\right)-20=40\)
\(\Leftrightarrow90+10k-20=40\)
\(\Leftrightarrow10k=-30\)
\(\Leftrightarrow k=-3\)
Vậy k = -3 thì pt nhận x = 2 làm nghiệm
Sao copy vậy bạn??????