K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2016

A=1+[\(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}\)

ta có \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{50^2}<\frac{1}{49.50}\)

=>A<1+\(\left[\frac{1}{1.2}+.........+\frac{1}{49.50}\right]\)

=>A<1+\(\left[\frac{1}{1}-\frac{1}{50}\right]\)

=>A<1+\(\frac{49}{50}\)

=>A<\(\frac{99}{50}\) <2

=>A<2

K MÌNH NHA BÀI NÀY MÌNH GHI MỎI TAY LẮM

22 tháng 4 2016

A=\(\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{50^2}\)

A<\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49\cdot50}\)

A<1+\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

A<1+\(\left(1-\frac{1}{50}\right)\)

A<1+\(\frac{49}{50}\)

=>A<2

13 tháng 4 2016

mỗi p/số của A đều bé hơn 1/1.2+1/2.3+1/3.4+......+1/49.50

A<1-1/2+1/2-1/3+1/3-1/4+..........+1/49-1/50(tách ra thành hiệu)

A<1-1/50

mà 1/50>0=>1-1/50<1<2

A<1-1/50<1<2

A<2

chúc học tốt

14 tháng 4 2016

\(A<\frac{1}{1\cdot2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49\cdot50}\)
          \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
          \(=1-\frac{1}{50}<1<2\)

4 tháng 5 2016

A = 1/2.2 + 1/3.3 +......+ 1/50.50

A < 1/1.2 + 1/2.3 +......+ 1/49.50

A < 1 - 1/2 + 1/2 - 1/3 +.....+ 1/49 - 1/50

A < 1 - 1/50

A < 49/50 < 3/4 

=> A < 3/4 (đpcm)

5 tháng 5 2016

Hình như bạn Killua giải sai thì phải.. 49/50 > 3/4 chứ

Theo mình thì bài này nên giữ nguyên phân số 1/2^2( vì nó bằng 1/4)

Xét : B = 1/3^2 + 1/4^2 +...+ 1/50^2

       => B < 1/2.3 + 1/3.4 +...+ 1/49.50

       => B<  1/2-1/3+1/3-1/4+...+1/49-1/50

       => B < 1/2-1/50 < 1/2

Suy ra A < 1/2^2 + 1/2 = 3/4 

Vậy A< 3/4

6 tháng 5 2017

\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(.......\)
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Mà \(\frac{49}{50}< 2\)
\(\Rightarrow A< 2\)
 

15 tháng 5 2017

a<2 ai k cho mik, mik se k lại hứa thế lun nói là làm

11 tháng 4 2017

\(\frac{1}{2^2}< \frac{1}{1.2}\)

...................\(\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

\(\Rightarrow A< 1-\frac{1}{50}< \frac{49}{50}< 1< 2\)

10 tháng 4 2017

1/2^2<1/1*2;1/3^2<1/2*3;1/4^2<1/3*4;1/50^2<1/49*50

ta có:

   =>    1/1^2+1/2*3+1/3*4+...+1/49*50

  <=>   1/1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50

  <=>   1-1/50 < 2

    =>   A < 2

2 tháng 4 2017

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...\frac{1}{49.50}\)

\(A< 1+\frac{49}{50}\)

\(A< 1\frac{49}{50}\)

Mà \(\frac{49}{50}< 2\)nên A<2

2 tháng 4 2017

mình làm đúng rồi

ti ck cho mình đi

2 tháng 5 2017

\(A=\frac{1}{1^1}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

Ta thấy \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{50^2}< \frac{1}{49.50}\)

Khi đó \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{49.50}=B\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{49}-\frac{1}{50}< 1\)

Vì \(A< 1+B\)mà \(B< 1\)nên \(B+1< 2\)do đó \(A< 2\)

Vậy \(A< 2\)

2 tháng 5 2017

1/12+1/22+....+1/502<1/1+1/1x2+1/2x3+....+1/49x50=1-1/50=49/50<2

=>A<2(đpcm)

12 tháng 5 2016

\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1+\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(A<1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}<2\)

11 tháng 5 2016

Ta có: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};....;\frac{1}{50^2}<\frac{1}{49.50}\)

=>\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{49.50}\)

=>\(A<1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\)

=>\(A<2-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}<2\)

=>A<2  (đpcm)

11 tháng 5 2016

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

\(A=1+\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)=1+B\)( B là biểu thức trong ngoặc )

Xét B

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

\(B<\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{49.50}\)

\(B<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(B<\frac{1}{1}-\frac{1}{50}\)

\(B<\frac{49}{50}<1\)

Vậy B < 1

\(\Rightarrow A=1+B<1+1=2\)

\(\Rightarrow A<2\)