K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDBH vuông tại H và ΔECK vuông tại K có

DB=CE

góc DBH=góc ECK

=>ΔDBH=ΔECK

=>HB=CK

b: Xet ΔABH và ΔACK có

AB=AC
góc ABH=góc ACK

BH=CK

=>ΔABH=ΔACK

=>góc AHB=góc AKC

c: Xét ΔADE có AB/BD=AC/CE
nên BC//DE

=>HK//ED

d: Xét ΔAHE và ΔAKD có

AH=AK

HE=KD

AE=AD

=>ΔAHE=ΔAKD

a: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có

BD=CE

\(\widehat{HBD}=\widehat{KCE}\)

Do đó: ΔHBD=ΔKCE

Suy ra: HB=KC

b: Xét ΔAHB và ΔAKC có

AB=AC

\(\widehat{ABH}=\widehat{ACK}\)

BH=CK

DO đó: ΔAHB=ΔAKC

Suy ra: \(\widehat{AHB}=\widehat{AKC}\)

A B C H K D E I

a, \(\Delta ABC\)cân tại A = > \(\widehat{ABC}=\widehat{ACB}\)

Xét \(\Delta HBD\perp H\)và \(\Delta KCE\perp K\)có :

\(BD=CE\left(gt\right)\)

Mặt khác : góc HBD đối đỉnh với góc ABC = > góc HBD = góc ABC

                  góc KCE đối đỉnh với góc ACB = > góc KCE = góc ACB

Mà góc ABC = ACB = > góc HBD = góc KCE 

\(=>\Delta HBD=\Delta KCE\left(ch-gn\right)\)

= > HB = CK ( 2 cạnh tương ứng )

b, Xét \(\Delta AHB\)và \(\Delta AKC\)có 

HB = CK ( cmt )

AB = AC ( gt )

\(\widehat{HBD}+\widehat{HBA}=180^0\)

= > \(\widehat{HBA}=180^0-\widehat{HBD}\)( 1 )

\(\widehat{KCE}+\widehat{KCA}=180^0\)

= > \(\widehat{KCA}=180^0-\widehat{KCE}\)( 2 )

Từ ( 1 ) và ( 2 ) = > \(\widehat{HBA}=\widehat{KCA}\)

\(=>\Delta AHB=\Delta AKC\left(c.g.c\right)\)

c, \(\Delta ABC\)cân tại A = > \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\)( 1 )

\(B\in AD\)

= > AB + BD = AD ( * )

\(C\in AE\)

= > AC + CE = AE ( ** )

Từ ( * ) và ( ** ) = > AD = AE  hay \(\Delta ADE\)cân tại A 

= > \(\widehat{ADE}=\frac{180^0-\widehat{EAD}}{2}\)( 2 )

Từ ( 1 ) và ( 2 ) = > \(\widehat{ABC}=\widehat{ADE}\)hay HK // DE

d, Xét \(\Delta AHE\)và \(\Delta AKD\)có:

\(\widehat{A}\)chung

AH = AK ( cmt )

AE = AD ( cmt )

= > \(\Delta AHE=\Delta AKD\left(c.g.c\right)\)

câu e, bạn làm nốt nhé