Cho tam giác ABC cân tại A, kẻ đường cao AH. Lấy O là trung điểm AH. BO cắt AC tại D, CO cắt AB tại E. Kẻ CN vuông góc với Bo tại N, AM vuông góc với BO tại M. Tính S của aeom bik abc = 24 cm vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Gọi F là trung điểm DC.
Xét tam giác ABC cân tại A có:
AH là đường cao (gt)
=>AH cũng là đường trung tuyến
=>H là trung điểm BC.
Xét tam giác DBC có:
H là trung điểm BC (cmt)
F là trung điểm DC (gt)
=>HF là đường trung bình của tam giác DBC
=>HF//OD.
Xét tam giác AHF có:
O là trung điểm AH (gt)
HF//OD (cmt)
=>D là trung điểm AF
=>AD=DF
Mà DF=CF=\(\dfrac{1}{2}\)DC (F là trung điểm DC)
=>AD=DF=CF=\(\dfrac{1}{2}\)DC
Ta có: AM vuông góc với BO(gt)
CN vuông góc với BO(gt)
=>AM//CN
Xét tam giác ADM có:
AM//CN (cmt)
=>\(\dfrac{ÀD}{DC}=\dfrac{AM}{CN}=\dfrac{1}{2}\)(định lí Ta-let)
=>CN=2AM
Em xem lại đề nha
AH là đường cao thì H∈BC
mà AM⊥BC(M∈BC)
⇒ H trùng M rồi
a: Xét ΔAHB và ΔAHE có
AH chung
HB=HE
AB=AE
Do đó: ΔAHB=ΔAHE
a) Xét ΔABO vuông tại O và ΔAEO vuông tại O có
AO chung
\(\widehat{BAO}=\widehat{EAO}\)(AO là tia phân giác của \(\widehat{BAE}\))
Do đó: ΔABO=ΔAEO(cạnh góc vuông-góc nhọn kề)
b) Ta có: ΔABO=ΔAEO(cmt)
nên AB=AE(Hai cạnh tương ứng)
Xét ΔABE có AB=AE(cmt)
nên ΔABE cân tại A(Định nghĩa tam giác cân)