32/20x23+32/23x26+...+32/77x80
tính tổng nhế
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=9/20x23+9/23x26+...+9/77x80
<=>\(A=3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right)\)
\(\Rightarrow A=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(\Rightarrow A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(\Rightarrow A=3\cdot\frac{3}{80}\)
\(\Rightarrow A=\frac{9}{80}\)
A=1/20*23+1/23*26+...+1/77*80
=1/3(1/20-1/23+1/23-1/26+...+1/77-1/80)
=1/3*3/80=1/80<1/79
\(\frac{1}{11×14}+\frac{1}{14×17}+\frac{1}{17×20}+\frac{1}{20×23}+\frac{1}{23×26}\)
\(=\frac{1}{3}×\left(\frac{3}{11×14}+\frac{3}{14×17}+\frac{3}{17×20}+\frac{3}{20×23}+\frac{3}{23×26}\right)\)
\(=\frac{1}{3}×\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{23}-\frac{1}{26}\right)\)
\(=\frac{1}{3}×\left(\frac{1}{11}-\frac{1}{26}\right)\)
\(=\frac{1}{3}×\frac{15}{286}\)
\(=\frac{5}{286}\)
\(\frac{1}{11\times14}+\frac{1}{14\times17}+\frac{1}{17\times20}+\frac{1}{20\times23}+\frac{1}{23\times26}\)
\(=\frac{1}{3}\times\left(\frac{1}{11\times14}+\frac{1}{14\times17}+\frac{1}{17\times20}+\frac{1}{20\times23}+\frac{1}{23\times26}\right)\)
\(=\frac{1}{3}\times\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}\right)\)
\(=\frac{1}{3}\times\left(\frac{1}{11}-\frac{1}{26}\right)\)
= 5/286
Đặt \(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\) ta có :
\(A=3\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(A=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(A=3.\frac{3}{80}\)
\(A=\frac{9}{80}< 1\) ( tử bé hơn mẫu )
Vậy \(A< 1\)
Chúc bạn học tốt ~
\(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+...+\frac{1}{77\cdot80}\)
\(=\frac{1}{3}\left[\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right]\)
\(=\frac{1}{3}\left[\frac{1}{20}-\frac{1}{23}+...+\frac{1}{77}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\left[\frac{1}{20}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\left[\frac{4}{80}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\cdot\frac{3}{80}=\frac{1}{1}\cdot\frac{1}{80}=\frac{1}{80}\)
Mà \(\frac{1}{80}< \frac{1}{9}\)nên \(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+...+\frac{1}{77\cdot80}< \frac{1}{9}\)
Vậy : ...
\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)
\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\)
\(=\frac{1}{80}< \frac{1}{9}\)
đặt A=32/20x23+32/23x26+...+32/77x80
\(A=3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=3\cdot\frac{3}{80}\)
\(=\frac{9}{80}\)
giúp với