K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2018

Đặt \(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\) ta có : 

\(A=3\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)

\(A=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(A=3.\frac{3}{80}\)

\(A=\frac{9}{80}< 1\) ( tử bé hơn mẫu ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

18 tháng 4 2016

đặt A=32/20x23+32/23x26+...+32/77x80

\(A=3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=3\cdot\frac{3}{80}\)

\(=\frac{9}{80}\)

18 tháng 4 2016

giúp với

9 tháng 4 2019

\(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+...+\frac{1}{77\cdot80}\)

\(=\frac{1}{3}\left[\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right]\)

\(=\frac{1}{3}\left[\frac{1}{20}-\frac{1}{23}+...+\frac{1}{77}-\frac{1}{80}\right]\)

\(=\frac{1}{3}\left[\frac{1}{20}-\frac{1}{80}\right]\)

\(=\frac{1}{3}\left[\frac{4}{80}-\frac{1}{80}\right]\)

\(=\frac{1}{3}\cdot\frac{3}{80}=\frac{1}{1}\cdot\frac{1}{80}=\frac{1}{80}\)

Mà \(\frac{1}{80}< \frac{1}{9}\)nên \(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+...+\frac{1}{77\cdot80}< \frac{1}{9}\)

Vậy : ...

9 tháng 4 2019

\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)

\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\frac{3}{80}\)

\(=\frac{1}{80}< \frac{1}{9}\)

2 tháng 2 2019

a) \(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2007x2009}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2007}-\frac{1}{2009}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2009}\right)=\frac{1}{2}\cdot\frac{2008}{2009}=\frac{1004}{2009}\)

....

các bài cn lại bn lm tương tự nha

19 tháng 8 2023

b, \(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)

3A = \(\dfrac{1}{6}+\dfrac{1}{18}+...+\dfrac{1}{330}\)

3A-A = \(\dfrac{1}{6}-\dfrac{1}{990}\)

2A = 82/495

A =82/495 : 2 

A=41/495

12 tháng 4 2016

đặt A=9/20x23+9/23x26+...+9/77x80

<=>\(A=3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right)\)

\(\Rightarrow A=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(\Rightarrow A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(\Rightarrow A=3\cdot\frac{3}{80}\)

\(\Rightarrow A=\frac{9}{80}\)

A=1/20*23+1/23*26+...+1/77*80

=1/3(1/20-1/23+1/23-1/26+...+1/77-1/80)

=1/3*3/80=1/80<1/79

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

\(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{9}{10!}\)

\(A=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{10-1}{10!}\)

\(A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{10}{10!}-\frac{1}{10!}\)

\(A=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}+...+\frac{1}{9!}-\frac{1}{10!}\)

\(A=1-\frac{1}{10!}\)

\(\Rightarrow A< 1\left(đpcm\right)\)