Giúp tớ với:
Cho x+y+z= 0 xy+yz+xz = 0 Chứng minh: x=y=z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
(x+y+z)^2=x^2+y^2+z^2+2 (xy+yz+zx )
<=>x^2+y^2+z^2=0
<=>x=y=z=0
Lời giải:
BĐT cần chứng mình tương đương với:
$(xy+yz+xz)^2\geq 3(x+y+z)$
$\Leftrightarrow (xy+yz+xz)^2\geq 3xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(zx)^2+2xyz(x+y+z)\geq 3xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(xz)^2\geq xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(xz)^2-xyz(x+y+z)\geq 0$
$\Leftrightarrow 2(xy)^2+2(yz)^2+2(xz)^2-2xyz(x+y+z)\geq 0$
$\Leftrightarrow (xy-yz)^2+(yz-xz)^2+(xz-xy)^2\geq 0$
(luôn đúng với mọi $x,y,z\geq 0$)
Dấu "=" xảy ra khi $x=y=z=1$
\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
=>đpcm
2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1
= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1
= xz/1+xz+z + 1/z+1+xz + z/xz+z+1
= xz+1+x/1+xz+x = 1 (đpcm)
Trước hết, ta đi chứng minh một bổ đề sau: Nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\). Thật vậy, ta phân tích
\(P=a^3+b^3+c^3-3abc\)
\(P=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(P=\left(a+b+c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(P=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Hiển nhiên nếu \(a+b+c=0\) thì \(P=0\) hay \(a^3+b^3+c^3=3abc\), bổ đề được chứng minh.
Do \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) nên áp dụng bổ đề, ta được \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\).
Vì vậy \(\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\) \(=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\) \(=xyz.\dfrac{3}{xyz}=3\). Ta có đpcm
Vì 0xy+yz+xz=0.Nên:X,y,z đều bằng 0 và bằng nhau.