Chứng minh rằng: \(A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{49^2}+\frac{1}{50^2}<2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{49^2}+\frac{1}{50^2}\)
< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{48.49}+\frac{1}{49.50}\)
< \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{48.49}+\frac{1}{49.50}=1-\frac{1}{50}<1\) (đpcm)
Ta có:
\(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(...\)
\(\frac{1}{50^2}<\frac{1}{49.50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<1-\frac{1}{50}\)
Mà \(1-\frac{1}{50}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<1\)
Ta có: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\) (đpcm)
*đpcm = điều phải chứng minh
đặt B=1/2.3+1/3.4+...+1/49.50
=1/1.2+1/2.3+1/3.4+...+1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/50.50<1-1/2+1/2-1/3+...+1/49-1/50 (3)
từ (1),(2),(3) =>A<2
Ta có : \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{50^2}=1+\frac{1}{2^2}+........+\frac{1}{50^2}\)
=> \(A<1+\frac{1}{1.2}+\frac{1}{2.3}+.............+\frac{1}{49.50}\)
=> \(A<1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{49}-\frac{1}{50}\)
=> \(A<2-\frac{1}{50}\Rightarrow A<2\)
Vậy A nhỏ hơn 2
Cô chữa chưa bạn >>>
Cho mk xin lời giải đk ko ?
Giúp vs.. Mơn nhìu lắm!!!
Bạn xem lời giải ở đường link sau nhé:
Câu hỏi của nguyenducminh - Toán lớp 6 - Học toán với OnlineMath
A=\(\frac{1}{1^2}\)\(+\frac{1}{2^2}\)\(+\frac{1}{3^2}\)\(+...+\frac{1}{50^2}\)
A<1\(+\frac{1}{1.2}\)\(+\frac{1}{2.3}\)\(+...\frac{1}{49.50}\)
=1+1-\(-\frac{1}{2}\)\(+\frac{1}{2}\)\(-\frac{1}{3}\)\(+...+\frac{1}{49}\)\(-\frac{1}{50}\)
=\(1+1-\frac{1}{50}\)
=\(2-\frac{1}{50}\)\(< 2\)
\(\Rightarrow A< 2\)
Ta có: \(\frac{1}{2^2}<\frac{1}{1\cdot2}\)
\(\frac{1}{3^2}<\frac{1}{2\cdot3}\)
.....................
\(\frac{1}{50^2}<\frac{1}{49\cdot50}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{49^2}+\frac{1}{50^2}<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
Ta có: \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}<1\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{49^2}+\frac{1}{50^2}<1\)
\(\Rightarrow A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{49^2}+\frac{1}{50^2}<2\)
\(A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{49^2}+\frac{1}{50^2}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}+\frac{1}{50.51}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)
\(A=1-\frac{1}{51}\)
\(A=\frac{50}{51}<1<2\) (đpcm)