Tìm sỗ tự nhiên n để A=32n-22n+1-6n là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
n4+3n3-22n2+6n : n2+2 = n2+3n-24 dư 48
=> n4+3n3-22n2+6n = (n2+3n-24) + \(\frac{48}{n^2+2}\)
=> n2+2 thuộc Ư(48) = {-1;-2;-3;-4;-6;-8;-12;-16;-24;-48;1;2;3;4;6;8;12;16;24;48} (n2+2 luôn dương)
=> n2 = {2-2; 3-2; 4-2;.........} = {0; 1; 2; 3; 4; 6;......... }
mà A có giá trị nguyên nên n2 = {0; 1; 4}
=> n = {0; ±1; ±2}
Đáp án cần chọn là: D
A = 6 n + 3 2 n − 1 = 6 n − 3 + 6 2 n − 1 = 6 n − 3 2 n − 1 + 6 2 n − 1 = 3 ( 2 n − 1 ) 2 n − 1 + 6 2 n − 1 = 3 + 6 2 n − 1
Vì n∈Z nên để A∈Z thì 2n−1∈U(6) = {±1;±2;±3;±6}
Ta có bảng:
Vậy n∈{−1;0;1;2}
Để đây là số nguyên tố thì 2<=2n^2-6n+2<=4
=>2n^2-6n=0 hoặc 2n^2-6n-2=0 hoặc 2n^2-6n-3=0
mà n tự nhiên
nên n=0 hoặc n=3
\(A=n^3-6n^2+9n-2=n\left(n^2-6n+9\right)-2=n\left(n-3\right)^2-2\)
Vì một trong các thừa số \(n\) và \(\left(n-3\right)^2\) là số chẵn cho nên \(n\left(n-3\right)^2⋮2\forall n\in N\)
\(\Rightarrow n\left(n-3\right)^2-2⋮2\forall n\in N\) (số chẵn trừ đi số chẵn bằng số chẵn)
\(\Rightarrow A⋮2\forall n\in N\)
Mà 2 là số nguyên tố duy nhất mà chia hết cho 2
\(\Rightarrow n^3-6n^2+9n-2=2\)
\(\Leftrightarrow n^3-6n^2+9n-4=0\)
Giải phương trình trên ta được \(n\in\left\{1;4\right\}\) (đều thoả mãn điều kiện \(n\in N\))
Vậy với \(n\in\left\{1;4\right\}\)thì \(A=n^3-6n^2+9n-2\) là số nguyên tố.
Tìm số nguyên tố P để 2p + P2 là số nguyên tố
GIÚP MÌNH VỚI!!!