Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì p2 - 1 chia hết cho 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1)
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp
=>trong hai sô p+1,p-1 tồn tại một số là bội của 2
=>p^2-1 chia hết cho 2 (2)
từ (1) và (2) => p^2-1 chia hết chia hết cho với mọi số nguyên tố p>3
Vì p là số nguyên tố, p>3 nên p không chia hết cho 3
Vì p không chia hết cho 3 nên p có 1 trong 2 dạng: 3k+1, 3k+2(k thuộc N*)
Xét hai trường hợp:
+)p=3k+1(k thuộc N*)
Khi đó p2-1=(3k+1)2-1=9k2+6k+1-1=9k2+6k=3(3k2+2k)
Vì k thuộc N* nên 3k2+2k thuộc N*
Vì thế 3(3k2+2k) chia hết cho 3 nên p2-1 chi hết cho 3
+)p=3k+2(k thuộc N*)
Khi đó p2-1=(3k+2)2-1=9k2+12k+4-1=9k2+12k+3=3(3k2+4k+1)
vì k thuộc N* nên 3k2+4k+1 thuộc N*
Vì thế 3(3k2+4k+1) chia hết cho 3 nên p2-1 chia hết cho 3
Vậy nếu p là số nguyên tố lớn hơn 3 thì p2-1 chia hết cho 3
Giả sử p� là số nguyên tố lớn hơn 33, vì vậy p là số lẻ. Do đó, ta có thể biểu diễn p dưới dạng p=2k+1,�=2�+1, với k� là một số nguyên không âm.
Thay p� vào p2−1�2-1, ta có: p2�2 −- 11 == (2k+1)2(2�+1)2−-11==4k2+4k+1−14�2+4�+1-1==4k(k+1)4�(�+1)
Ta nhận thấy rằng một trong hai số k� hoặc k+1�+1 phải là số chẵn. Vì vậy, một trong hai số k� hoặc k+1�+1 chia hết cho 22. Vì vậy, p2�2−-11 chia hết cho 2.4=8.2.4=8.
Ngoài ra, vì p là số nguyên tố lớn hơn 33, nên p không chia hết cho 33. Vì vậy, k� và k+1�+1 không thể đều chia hết cho 33. Do đó, k� hoặc k+1�+1 phải chia hết cho 33. Vì vậy, p2�2−-11 chia hết cho 33.
Tổng hợp lại, p2�2−-11 chia hết cho 88 và 33. Vì 88 và 33 nguyên tố cùng nhau, nên p2�2−-11 chia hết cho 8.3=24.
Xét số nguyên tố p khi chia cho 3.
Ta có: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 thì p2 - 1 = (3k + 1)2 -1 = 9k2 + 6k chia hết cho 3
Nếu p = 3k + 2 thì p2 - 1 = (3k + 2)2 - 1 = 9k2 + 12k chia hết cho 3
Vậy p2 - 1 chia hết cho 3.
Đúng 100%
Nếu p là số nguyên tố lớn hơn 3 thì p2-1=p2-12=(p-1)(p+1)
Ta đặt A=(p-1)p(p+1) thì A chia hết cho 3
Mặt khác (p;3)=1
=>(p-1)(p+1) chia hết cho 3 hay p2-1 chia hết cho 3
Vì p là số nguyên tô lớn hơn 3 nên p ko chia het cho 3
Do đó p^2 chia cho 3 dư 1 tức p^2=3k+1
=>p^2-1=3k+1-1=3k chia het cho 3(đpcm)
Vậy p^2-1 chia het cho 3
Tĩck nhé
Theo đề bài: p là số nguyên tố lớn hơn 3
=> p là số lẻ
=> p = 2k + 1 ( \(k\in z;k>1\))
=> A = (p - 1)( p +1 ) = 2k(2k+2) = 4k(k+1)
=> A chia hết cho 8 (1)
Ta lại có: p = 3n + 1 hoặc 3n - 1 (\(n\in Z,N>1\))
=> A chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 24
Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:
A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.
Ta có: p = 3h + 1 hoặc 3h – 1 (h nguyên và h > 1) suy ra A chia hết cho 3.
Vậy A = (p – 1)(p + 1) chia hết cho 24
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
p là SNT, p>3 => p có dạng 3k+1 và 3k+2(k thuộc N*)
+)p=3k+1 => p^2-1 = (3k+1)^2-1
=(3k)^2+2.3k.1+1^2-1
=9.k^2+6k
=>p^2-1 chia hết cho
+)p=3k+2=> p^2-1 = (3k+2)^2-1
=(3k)^2+2.3k.2+2^2-1
=9.k^2+12k +3
=>p^2-1 chia hết cho
Vậy ..........