42 + 8. (98 – 32.23)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = 2 10 - 2 5 = 1024 - 32 = 992
b, B = 4 3 - 4 2 - 4 = 64 - 16 - 4 = 44
c, C = 3 2 . 2 3 + 4 3 . 2 5 = 9.8 + 64.32 = 2120
d, D = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 = 1 + 8 + 27 + 64 + 125 = 225
a) A = 2 10 - 2 5 = 1024 - 32 = 992 .
b) B = 4 3 - 4 2 - 4 = 64 - 16 - 4 = 44 .
c) C = 3 2 . 2 3 + 4 3 . 2 5 = 9 . 8 + 64 . 32 = 2120 .
d) D = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 = 1 + 8 + 27 + 64 + 125 = 225
a ) A = 2 10 - 2 5 = 1024 - 32 = 992 . b ) B = 4 3 - 4 2 - 4 = 64 - 16 - 4 = 44 . c ) C = 3 2 . 2 3 + 4 3 . 2 5 = 9 . 8 + 64 . 32 = 2120 . d ) D = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 = 1 + 8 + 27 + 64 + 125 = 225 .
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
(3x - 9).12 = 32 . 23
<=> 36x - 108 = 9 . 8
<=> 36x = 180
<=> x = 5
\(\left(3x-9\right).12=3^2.2^3\)
\(\Rightarrow\left(3x-9\right).12=72\)
\(\Rightarrow3x-9=72:12=6\)
\(\Rightarrow3x=6+9=15\Rightarrow x=5\)
\(-\dfrac{18}{42}\cdot\dfrac{35}{42}:\dfrac{-98}{42}\)
\(=-\dfrac{18}{42}\cdot\dfrac{35}{42}\cdot\dfrac{42}{-98}\)
\(=\dfrac{-18}{42}\cdot\dfrac{-5}{14}\\ =\dfrac{15}{98}\)
\(\dfrac{-18}{42}.\dfrac{3\text{5}}{42}:\dfrac{-98}{42}\)
\(=\dfrac{-18}{42}.\dfrac{3\text{5}}{42}.\dfrac{-42}{98}\)
\(=\dfrac{1\text{5}}{98}\)
Bài 2:
a: =>x-35=-23
=>x=12
b: =>|x-8|=13
=>x-8=13 hoặc x-8=-13
=>x=21 hoặc x=-5
Bài 1:
a: =42-98-42+12-12=-98
b: =10x4x3x(-25)=40x(-25)x3=-1000x3=-3000
\(=\left(4\sqrt{2}+3\sqrt{2}-7\sqrt{2}\right)\left(\sqrt{42}+2\sqrt{5}-\sqrt{32}\right)=0.\left(\right)=0\)
=42+8(98-9.8)
=42+8.26
=42+208=250
250