C/m : nếu 7x + 4y chia hết cho 37 thì 13x + 18y chia hết cho 37
b, cho A =\(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2016}\)
và B=\(\left(\frac{3}{2}\right)^{2017}.2\)
tính B-A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từng bài 1 thôi nha bn!!!
a) Xét hiệu: A = 9.(7x+4y) - 2. (13x+18y)
A = 63x + 36y - 26x - 36y
A = 37x \(\Rightarrow A⋮37\) Vì 7x + 4y chia hết cho 37
9.(7x+4y) chia hết cho 37
Mà A chia hết cho 37
\(2\left(13x+18y\right)⋮37\)
Do 2 và 37 là nguyên tố cùng nhau
13x+18y chia hết cho 37
Vậy nếu 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)
\(\Leftrightarrow a+b+c=0\)
Xét : \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right).\left(b+c\right).\left(c+a\right)=-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) luôn chia hết cho 3
Để \(P\in Z\)thì \(n\in Z\)
\(P=\frac{2n+5}{n+3}\)
\(\Rightarrow P=\frac{2n+6-1}{n+3}\)
\(\Rightarrow P=2+\frac{-1}{n+3}\)
Mà \(n\in Z;-1⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{-4;-2\right\}\)
3. Từ đề bài, ta có :
\(\frac{x}{9}-\frac{1}{18}=\frac{3}{y}\)
\(\Rightarrow\frac{2x-1}{18}=\frac{3}{y}\)
\(\Rightarrow\left(2x-1\right).y=18.3=54\)
Mà \(2x-1\)là số lè.
\(\Rightarrow\)Ta có bảng sau :
2x - 1 | 1 | 27 | 9 |
y | 54 | 2 | 6 |
x | 1 | 14 | 5 |
Vậy ta tìm được 3 cặp số ( x;y ) thỏa mãn đề bài là : ( 1;54 ) ; ( 14;2 ) ; ( 5;6 )
P/s : Bài 2 k làm được thì ib mk nhé -.-