cho các số tự nhiên từ 1 đến 11 đc viết theo thứ tự tùy ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta đc 1 tổng. C/m rằng trong các tổng nhận đc bao giờ cũng tìm ra 2 tổng mà hiệu của chúng là 1 số chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 1 đến 11 có 11 số hạng
Suy ra mỗi số trong các số trên cộng với số thứ tự của nó sẽ cho ta 11 tổng
Mà 1 số khi chia cho 10 sẽ xảy ra 10 trường hợp về số dư là 0;1;2;...;9
Suy ra có ít nhất 2 số chia cho 10 có cùng số dư ( theo nguyên lí dirich lê)
Suy ra hiệu của 2 tổng chia cho 10 có cùng số dư sẽ chia hết cho 10
Vậy các tông nhận được bao giờ cũng tìm ra 2 tổng mà hiệu của chúng là 1 số chia hết cho 10 (DPCM)
k nha !!!
Nếu trong 11 số tự nhiên đó có 1 số chia hết cho 10 thì bài toán đã được chứng minh.
Nếu trong 11 số đã cho, không có số nào chia hết cho 10, ta đặt:
A1= 1
A2= 1+2
A3= 1+2+3
...
A11= 1+2+3+...+10+11
Ta biết rằng, trong 1 phép chia cho 10, ta luôn nhận được 10 số dư từ 0->9
Vì ta có 11 dãy số nên ít nhất có 2 dãy số có cùng số dư trong phép chia cho 10.
Giả sử, dãy Bm và Bn có cùng số dư trong phép chia cho 10 thì ( Bm - Bn ) chia hết cho 10. => đpcm.