A= 1/20+1/30+1/42+1/56+...+1/990
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/4*5 + 1/5*6 + 1/6*7 +.....+1/99*100
A=1/4-1/5+1/5-1/6+1/6-1/7+...+1/99-1/100
A=1/4-1/100
A=25/100-1/100
A=6/25
A = 1/20 + 1/30 + 1/42 + 1/56 + .........+1/990
A = 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + ...........+ 1/99.100
A = 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ....... + 1/99 - 1/100
A = 1/4 - ( -1/5 + 1/5 ) - ( -1/6 + 1/6 ) - ( -1/7 + 1/7 ) - ...........- ( - 1/99 + 1/99 ) - 1/100
A = 1/4 - 0 - 0 - 0 - ........... - 0 - 1/100
A = 1/4 - 1/100
A = 25/100 - 1/100
A = 24/100
A = 6/25
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{990}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{6}{25}\)
=1/4.5+1/5.6+1/6.8+1/7.8+....1/33.30
=1/4-1/5+1/5-1/6+1/6-1/8+1/7-1/8+...+1/30-1/33
=1/4-1/33
=29/132
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{990}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{30.31}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{30}-\frac{1}{31}\)
\(=\frac{1}{4}-\frac{1}{31}\)
\(=\frac{27}{124}\)
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{9900}\)
\(=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{99\cdot100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{24}{100}=\frac{6}{25}\)
Đặt A=1/20+1/30+1/42+1/56+...+1/930
=>A=1/4.5+1/5.6+1/6.7+...+1/30.31
=>A=1/4-1/5+1/5-1/6+...+1/30-1/31
=>A=1/4-1/31
=>A=31/124-4/124
=>A=27/124
Vây A=27/124
đề bài sai à bn phải là 1/930 chứ
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{990}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{6}{25}\)
\(=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\) (minh chính luôn đề đó nha)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}=\frac{6}{25}\)
CHÚC BẠN HỌC GIỎI
Đề thiếu?
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{9900}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{6}{25}\)
linhchi buithi, bạn ơi số 990 hình như thiếu một số 0 thì phải hay sao ý. Mình cứ thấy thiếu cái gì đó.
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{990}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{25}{100}-\frac{1}{100}=\frac{6}{25}\)
A=1/20+1/30+1/42+...+1/9900
=1/(4*5)+1/5*6)+1/(6*7)+...+1/(99*100)
=1/4-1/5+1/5-1/6+1/6-1/7+...+1/99-1/100
=1/4-1/100
=6/25
hghgjhhhhhhf