tam giác ABC vuông tại A ,phân giác AD .BE,CF vuông góc với AD.đường thẳng qua F vuông góc với CE cắt đg thẳng chứa tia phân giác ngac tai dinh A tai K
CM3 dthang AK,FB,CE ĐỒNG QUY TẠI 1 ĐIỂM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a . Xét ΔABC ⊥ tại A , ta có :
\(\widehat{ABC} \) + \(\widehat{ACB}\) = 90o ( 2 góc nhọn phụ nhau )
35o + \(\widehat{ACB}\) = 90o
⇒ \(\widehat{ACB}\) = 55o
b . Xét ΔBEA và ΔBED, ta có :
\(\left\{{}\begin{matrix}BA=BD\left(gt\right)\\\widehat{ABE}=\widehat{DBE}\\BE-BE\end{matrix}\right.\)
⇒ ΔBEA = ΔBED ( cạnh chung )
thêm vào chỗ góc ABE = góc DBE là ( BE là tia pg của góc ABC ) và BE=BE ( cạnh chung ) hộ mình nhá :3