Tìm & phân tích một số các điệp ngữ trong các bài thơ, các bài ca dao đã học (Ngữ Văn 7 tập 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ư(5)={1; -1; 5; -5};
Ư(-30)={\(\pm1;\pm2;\pm3;\pm5;\pm6;\pm10;\pm15;\pm30\)}
Ư(19)={\(\pm1;\pm19\)}
Ư(22)=\(\left\{\pm1;\pm2;\pm11;\pm22\right\}\)
2b)BCNN(-8; -4)={8}
a)B(-8)={\(\pm8;\pm16;\pm24;\pm32;\pm40;...\)}
B(-4)\(\left\{\pm4;\pm8;\pm12;\pm16;\pm20;...\right\}\)
Cho D=3n+5/3n+2
Tìm n để D là phân số
Tìm n để D là số nguyên
Tìm n để D max
TÌm n để D min
- Xinh xắn, dễ thương,...
-hài hòa, chất phác, thật thà,...
- chăm chỉ, ngoan ngoãn, siêng năng,...
a) \(đk:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b) \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{2}+1\right)-1}{\sqrt{2}+1-2}=\dfrac{2\sqrt{2}+1}{\sqrt{2}-1}\)
c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{1}{2}\)
\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}-2\Leftrightarrow3\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
d) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}>2\)
\(\Leftrightarrow2\sqrt{x}-1>2\sqrt{x}-4\Leftrightarrow-1>-4\left(đúng\forall x\right)\)
e) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}-2}=2+\dfrac{3}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(x\ge0\)
\(\Rightarrow x\in\left\{1;9;25\right\}\)
Ta có:
24=2^3x3
36=2^2x3^2
60=2^2x3x5
BCNN(24,36,60)=2^3x3^2x5=360
BC(24,36,60)={0;360;720;1080;...}
a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)
\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)