cho 3 số thực dương a b c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\) tìm giá trị lớn nhất của biểu thức :
P = \(\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ca+a^2}}\)
\(=\frac{1}{\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}}+\frac{1}{\sqrt{\frac{1}{4}\left(b+c\right)^2+\frac{3}{4}\left(b-c\right)^2}}+\frac{1}{\sqrt{\frac{1}{4}\left(c+a\right)^2+\frac{3}{4}\left(c-a\right)^2}}\)
\(\le2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\le2.\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
\(P=\sum\frac{1}{\sqrt{a^2+b^2-ab+b^2+b^2+1}}\le\sum\frac{1}{\sqrt{ab+b^2+2b}}=\sum\frac{2}{\sqrt{4b\left(a+b+2\right)}}\)
\(\Rightarrow P\le\sum\left(\frac{1}{4b}+\frac{1}{a+b+1+1}\right)\le\sum\left(\frac{1}{4b}+\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+1+1\right)\right)\)
\(\Rightarrow P\le\frac{3}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3}{8}\le\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
2.
\(1\ge\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{3+a+b+c}\)
\(\Rightarrow a+b+c+3\ge6\Rightarrow a+b+c\ge6\)
\(P=\sum\frac{a^3}{a^2+ab+b^2}=\sum\left(a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\right)\ge\sum\left(a-\frac{ab\left(a+b\right)}{3ab}\right)\)
\(\Rightarrow P\ge\sum\left(\frac{2a}{3}-\frac{b}{3}\right)=\frac{1}{3}\left(a+b+c\right)\ge\frac{6}{3}=2\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Ta có : \(ab\le\frac{a^2+b^2}{2}\)
\(\Rightarrow a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)
Lại có : \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}b^2+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)
\(\Rightarrow\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}\left(\frac{1}{a}+\frac{5}{b}+2\right)\)
Khi đó :
\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)
Dấu " = " xay ra khi a=b=c=1
Vậy \(P_{Max}=\frac{3}{2}\) khi a=b=c=1
Lời giải:
Ta thấy:
$a^2-ab+b^2=\frac{1}{4}(a+b)^2+\frac{3}{4}(a-b)^2\geq \frac{1}{4}(a+b)^2$
$\Rightarrow \sqrt{a^2-ab+b^2}\geq \frac{a+b}{2}$
$\Rightarrow \frac{1}{\sqrt{a^2-ab+b^2}}\leq \frac{2}{a+b}$
Áp dụng BĐT Cauchy-Schwarz:
$\frac{4}{a+b}\leq \frac{1}{a}+\frac{1}{b}$
$\Rightarrow \frac{2}{a+b}\leq \frac{1}{2}(\frac{1}{a}+\frac{1}{b})$
Hoàn toàn tương tự với các phân thức còn lại ta có:
$P\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ hay $P\leq 3$
Vậy $P_{\max}=3$ khi $a=b=c=1$
Xét biểu thức \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)
\(=\frac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(abc+ab+bc+ca\right)+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{4+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)(Do \(ab+bc+ca+abc=4\)theo giả thiết)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}=1\)(***)
Với x,y dương ta có 2 bất đẳng thức phụ sau:
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(*)
\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(**)
Áp dụng (*) và (**), ta có:
\(\frac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\frac{1}{a+b+4}=\frac{1}{\left(a+2\right)+\left(b+2\right)}\)
\(\le\frac{1}{4}\left(\frac{1}{a+2}+\frac{1}{b+2}\right)\)(1)
Tương tự ta có: \(\frac{1}{\sqrt{2\left(b^2+c^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{b+2}+\frac{1}{c+2}\right)\)(2)
\(\frac{1}{\sqrt{2\left(c^2+a^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{c+2}+\frac{1}{a+2}\right)\)(3)
Cộng từng vế của các bất đẳng thức (1), (2), (3), ta được:
\(P\le\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)=\frac{1}{2}\)(theo (***))
Đẳng thức xảy ra khi \(a=b=c\)
\(3-P=1-\frac{x}{x+1}+1-\frac{y}{y+1}+1-\frac{z}{z+1}\)
\(=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}=\frac{9}{1+3}=\frac{9}{4}\)
\(\Rightarrow P\le\frac{3}{4}\)
Dấu "=" xảy ra tại \(x=y=z=\frac{1}{3}\)
\(\frac{1}{\sqrt{1+a^2}}=\frac{\sqrt{bc}}{\sqrt{bc+a.abc}}=\frac{\sqrt{bc}}{\sqrt{bc+a\left(a+b+c\right)}}=\frac{\sqrt{bc}}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)
Tương tự và cộng lại \(\Rightarrow P\le\frac{3}{2}\)
Đẳng thức xảy ra khi \(a=b=c=\sqrt{3}\)
Cần chứng minh: \(\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)\)
Thật vậy: \(\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)^2\Leftrightarrow4\left(a^2-ab+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow4a^2-4ab+4b^2-a^2-b^2-2ab\ge0\Leftrightarrow3\left(a^2+b^2-2ab\right)\ge0\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)
Áp dụng:\(P=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)
\(\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(c+a\right)}=2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=3\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\frac{1}{\sqrt{a^2-ab+b^2}}\le\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)