K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2015

Đề là gì, bạn ghi mình không hiểu gì cả  !

3 tháng 9 2015

Vế trái = \(k\cdot\left(k+1\right)\left(k+2\right)-\left(k-1\right)\cdot k\left(k+1\right)=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)

\(=k\left(k+1\right)\left(k+2-k+1\right)=3k\left(k+1\right)\) = Vế phải 

 

Ta có : S = 1.2.3 + 2.3.4 + 3.4.5 + ..... + k(k + 1)(k + 2) 

=> 4S = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + .... + k(k + 1)(k + 2)(k + 3)

= k(k + 1)(k + 2)(k + 3) 

= (k2 + 3k)(k2 + 3k + 2)

Nên :4S + 1 =   (k2 + 3k)(k2 + 3k + 2) + 1 

Đặt k2 + 3k = t 

Ta có : 4S + 1 = t(t + 2) + 1

= t+ 2t + 1 

= (t + 1)2 

Vì k thuộc N nên : k2 + 3k thuôc N <=> t + 1 = k2 + 3k + 1 thuôc N 

Vậy 4S + 1 là bình phương của 1 số tự nhiên 

9 tháng 4 2018

Ta có : C = |x-2016|+|x-2015|

=>       C = |2016-x|+|x-2015|

Áp dụng công thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)(Với a;b \(\in Z\))

\(\Rightarrow C\ge\left|2016-x+x-2015\right|=1\)

Vậy dấu "=" xảy ra khi :

\(\orbr{\begin{cases}x\le2016\\x\ge2015\end{cases}}\Rightarrow x=\hept{\begin{cases}2016\\2015\end{cases}}\)

Vậy với x = 2016 hoặc x = 2015 thì C đạt GTNN = 1

27 tháng 4 2021

Ta có : k(k+1)(k+2)-(k-1)(k+1)k

         =k(k+1).[(k+2)-(k-1)]

         =3k(k+1)

áp dụng  3(1+2)=1.2.3-0.1.2

             =>3(2.3)=2.3.4-1.2.3

             =>3(3.4)=3.4.5-2.3.4

            .....................................

              3n(n+1)=n(n+1)(n+2)-(n-1)n(n+1)

Cộng lại ta có   3.S=n(n+1)(n+2)=>S=n(n+1)(n+2)/3

CHÚC BẠN HỌC TỐT NHA !!!

k(k+1)(k+2)-(k-1)k(k+1)=k(k+1)(k+2-k+1)=3.k.(k+1)

S=1.2+2.3+3.4+...+n(n+1)

=>3S=1.2.3+2.3.3+3.4.3+...+n(n+1)3

=1.2.3+2.3.(4-1)+3.4(5-2)+...+n.(n+1)[(n+2)-(n-1)]

=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)

=n(n+1)(n+2)

\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

13 tháng 7 2015

m tưởng tao thik đăng à..............................................

11 tháng 4 2018

Ta có : 

\(S=1.2.3+2.3.4+3.4.5+...+k\left(k+1\right)\left(k+2\right)\)

\(4S=1.2.3.4+2.3.4.4+3.4.5.4+...+k\left(k+1\right)\left(k+2\right).4\)

\(4S=1.2.3.\left(4-0\right)+2.3.4\left(5-1\right)+3.4.5\left(6-2\right)+...+k\left(k+1\right)\left(k+2\right)\left(k+1-k-1\right)\)

\(4S=1.2.3.4-1.2.3.0+2.3.4.5-2.3.4+3.4.5.6-2.3.4.5+...+k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\)

\(\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)

\(4S=\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)

\(\Rightarrow\)\(4S+1=\left(k-1\right)k\left(k+1\right)\left(k+2\right)+1\)

Lại có tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương ( muốn chứng minh thì mình chứng minh luôn ) 

Vậy \(4S+1\) là bình phương của một số tự nhiên 

Chúc bạn học tốt ~ 

11 tháng 4 2018

S=1.2.3+2.3.4+3.4.5+...+k(k+1)(k+2)

=> 4S=1.2.3.4+2.3.4.4+3.4.5.4+...+k(k+1)(k+2).4

<=> 4S=1.2.3.4+2.3.4(5-1)+3.4.5(6-2)+...+k(k+1)(k+2)[(k+3)-(k-1)]

<=> 4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+k(k+1)(k+2)(k+3)-(k-1).k(k+1)(k+2)(k+3)

=> 4S=k(k+1)(k+2)(k+3)

=> 4S+1=k(k+1)(k+2)(k+3)+1 = k(k+3)(k+1)(k+2)+1 = (k2+3k)(k2+3k+2)+1

Đặt: n=k2+3k 

=> 4S+1 = n(n+2)+1 = n2+2n+1 = (n+1)2

=> 4S+1 = (k2+3k+1)2

=> (4S+1) là bình phương của 1 số tự nhiên có giá trị là: (k2+3k+1)

Ví dụ: k=5 thì 4S+1=(25+15+1)2=412

5 tháng 2 2016

cậu viết đề rõ hơn được ko

5 tháng 2 2016

k ( k+1)  (k+2) - (k-1)  k  ( k+1) = 3  k  ( k+1 )

=> k ( k+1) { ( k+2) - (k - 1) } = 3 k ( k+1)

=>  k ( k+1) 3 = 3 k ( k+ 1)

=> đpcm  

ps : khoang cach to de trong la dau nhan nhé