Chứng minh rằng (với k thuộc N *) :
k(k+1)(k+2) - (k-1)k(k+1) = 3.k.(k+1)
GIải hộ mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vế trái = \(k\cdot\left(k+1\right)\left(k+2\right)-\left(k-1\right)\cdot k\left(k+1\right)=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)
\(=k\left(k+1\right)\left(k+2-k+1\right)=3k\left(k+1\right)\) = Vế phải
Ta có : S = 1.2.3 + 2.3.4 + 3.4.5 + ..... + k(k + 1)(k + 2)
=> 4S = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + .... + k(k + 1)(k + 2)(k + 3)
= k(k + 1)(k + 2)(k + 3)
= (k2 + 3k)(k2 + 3k + 2)
Nên :4S + 1 = (k2 + 3k)(k2 + 3k + 2) + 1
Đặt k2 + 3k = t
Ta có : 4S + 1 = t(t + 2) + 1
= t2 + 2t + 1
= (t + 1)2
Vì k thuộc N nên : k2 + 3k thuôc N <=> t + 1 = k2 + 3k + 1 thuôc N
Vậy 4S + 1 là bình phương của 1 số tự nhiên
Ta có : C = |x-2016|+|x-2015|
=> C = |2016-x|+|x-2015|
Áp dụng công thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)(Với a;b \(\in Z\))
\(\Rightarrow C\ge\left|2016-x+x-2015\right|=1\)
Vậy dấu "=" xảy ra khi :
\(\orbr{\begin{cases}x\le2016\\x\ge2015\end{cases}}\Rightarrow x=\hept{\begin{cases}2016\\2015\end{cases}}\)
Vậy với x = 2016 hoặc x = 2015 thì C đạt GTNN = 1
Ta có : k(k+1)(k+2)-(k-1)(k+1)k
=k(k+1).[(k+2)-(k-1)]
=3k(k+1)
áp dụng 3(1+2)=1.2.3-0.1.2
=>3(2.3)=2.3.4-1.2.3
=>3(3.4)=3.4.5-2.3.4
.....................................
3n(n+1)=n(n+1)(n+2)-(n-1)n(n+1)
Cộng lại ta có 3.S=n(n+1)(n+2)=>S=n(n+1)(n+2)/3
CHÚC BẠN HỌC TỐT NHA !!!
k(k+1)(k+2)-(k-1)k(k+1)=k(k+1)(k+2-k+1)=3.k.(k+1)
S=1.2+2.3+3.4+...+n(n+1)
=>3S=1.2.3+2.3.3+3.4.3+...+n(n+1)3
=1.2.3+2.3.(4-1)+3.4(5-2)+...+n.(n+1)[(n+2)-(n-1)]
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)
=n(n+1)(n+2)
\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
m tưởng tao thik đăng à..............................................
Ta có :
\(S=1.2.3+2.3.4+3.4.5+...+k\left(k+1\right)\left(k+2\right)\)
\(4S=1.2.3.4+2.3.4.4+3.4.5.4+...+k\left(k+1\right)\left(k+2\right).4\)
\(4S=1.2.3.\left(4-0\right)+2.3.4\left(5-1\right)+3.4.5\left(6-2\right)+...+k\left(k+1\right)\left(k+2\right)\left(k+1-k-1\right)\)
\(4S=1.2.3.4-1.2.3.0+2.3.4.5-2.3.4+3.4.5.6-2.3.4.5+...+k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\)
\(\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)
\(4S=\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)
\(\Rightarrow\)\(4S+1=\left(k-1\right)k\left(k+1\right)\left(k+2\right)+1\)
Lại có tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương ( muốn chứng minh thì mình chứng minh luôn )
Vậy \(4S+1\) là bình phương của một số tự nhiên
Chúc bạn học tốt ~
S=1.2.3+2.3.4+3.4.5+...+k(k+1)(k+2)
=> 4S=1.2.3.4+2.3.4.4+3.4.5.4+...+k(k+1)(k+2).4
<=> 4S=1.2.3.4+2.3.4(5-1)+3.4.5(6-2)+...+k(k+1)(k+2)[(k+3)-(k-1)]
<=> 4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+k(k+1)(k+2)(k+3)-(k-1).k(k+1)(k+2)(k+3)
=> 4S=k(k+1)(k+2)(k+3)
=> 4S+1=k(k+1)(k+2)(k+3)+1 = k(k+3)(k+1)(k+2)+1 = (k2+3k)(k2+3k+2)+1
Đặt: n=k2+3k
=> 4S+1 = n(n+2)+1 = n2+2n+1 = (n+1)2.
=> 4S+1 = (k2+3k+1)2.
=> (4S+1) là bình phương của 1 số tự nhiên có giá trị là: (k2+3k+1)
Ví dụ: k=5 thì 4S+1=(25+15+1)2=412