Chứng minh rằng số có dạng abcabc chia hết cho 7; 11 và 13.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abcabc}\)
\(=10^5\cdot a+10^4\cdot b+10^3\cdot c+10^2\cdot a+10^1\cdot b+10^0\cdot c\)
\(=100100\cdot a+10010b+1001c\)
\(=91\left(1100a+110b+11c\right)⋮91\)
Ta có : abcabc = abc . 1001 = abc . 77.13
Vậy số có dạng abcabc luôn chia hết cho 77 (đpcm)
Ta có:
abcabc = abc*1001.
=abc*77*13.
Mà abc;13 đều EN.
=>Tích trên chia hết cho 77.
Vậy.....
Giải:
Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc . (1000 + 1)
= abc . 1001
= abc . 7 . 11 . 13
Vậy số abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11 và 13
N = abcabc = abc x 1001= abc x[7 x11x 13]
suy ra :abcabc chia het cho 7 , cho11,13
abcabc=abc.1000+abc=abc.(1000+1)=abc.1001=abc.11.13.7
Vậy abcabc chia hết cho 7;11;13
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
ta có:abcabc=abc.1001
mà 1001 chia hết cho 7;11;13(là số nguyên tố)
nên abc.1001 chia hết cho 7;11;13(là số nguyên tố)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
Ta có: abcabc = 1000abc + abc = 1001.abc
Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)
=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13
k mk nha!^-^
Ta có thành phần abc trong số abcabc được lặp lại 2 lần để tạo ra số này. Ta có ví dụ như thành phần 123 lặp lại 2 lần tạo nên số trên thành số 123123 giống như số trên và kết quả khi chia cho 143 là chia hết, kết quả là 861. Từ một ví dụ đó, ta suy ra rằng số abcabc hoàn tòan có thể chia hết cho 143.
P/S: Chúc bạn hok tốt !!!
ta có: abcabc = abc x 1000 + abc = abc x 1001
Ta thấy : 1001 chia hết cho 143
=> abc x 1001 chia hết cho 143
=> abcabc chia hết cho 143
HOK TOT
abcabc=abc*1001=abc*7*11*13
Vì 7;11;13 đều là 3 số nguyên tố nên số có dạng abcabc chia hết ít nhất cho 3 số nguyên tố
Giải:
Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc . (1000 + 1)
= abc . 1001
= abc . 7 . 11 . 13
Vậy số abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11 và 13