Cho a, b không âm thỏa mãn: \(a^2+b^2=a+b\). Tìm GTNN của biểu thức: \(S=\dfrac{a}{a+1}+\dfrac{b}{b+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S\ge0\), đẳng thức xảy ra khi a = b = 0.
Bài này chắc có vấn đề, đáng lẽ phải là tìm GTLN
Nè Phan Linh Nhi, mk ko hỉu cái chỗ: a+b\(\le2\). Bn có thể giải thích chi tiết cho mk đc ko??
Áp dụng bất đẳng thức AM - GM ta có:
\(\dfrac{\sqrt{a^2+b^2+c^2}}{8}+\dfrac{\sqrt{a^2+b^2+c^2}}{8}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{3}{4}\). (1)
Đặt \(\sqrt{a^2+b^2+c^2}=t\Rightarrow\sqrt{\dfrac{4}{3}}\le t\le2\).
\(\dfrac{3\sqrt{a^2+b^2+c^2}}{4}+\dfrac{ab+bc+ca}{2}=\dfrac{3t}{4}+\dfrac{4-2t^2}{4}=\dfrac{\left(2-t\right)\left(2t+1\right)}{4}+\dfrac{3}{2}\ge\dfrac{3}{2}\). (2)
Cộng vế với vế của (1), (2) ta được \(P\ge\dfrac{9}{4}\).
...
\(T=\dfrac{a}{2-a}+\dfrac{b}{2-b}+\dfrac{c}{2-c}\)
- Với min: hãy chứng minh BĐT phụ sau: \(\dfrac{a}{2-a}\ge\dfrac{18a-1}{25}\)
(Lưu ý rằng a;b;c không âm nên nếu nhân cả tử và mẫu với a chẳng hạn để Cauchy-Schwarz thì sẽ dẫn tới khả năng mẫu số bằng 0 bài làm ko đủ chặt chẽ)
- Với max: chứng minh BĐT phụ sau: \(\dfrac{a}{2-a}\le a\)
Ta có: \(\sqrt{a^2+b^2+c^2}\ge\sqrt{\dfrac{\left(a+b+c\right)^2}{3}}=\sqrt{3};\sqrt{a^2+b^2+c^2}\le\sqrt{\left(a+b+c\right)^2}=3\).
Đặt \(\sqrt{a^2+b^2+c^2}=t\) \((\sqrt{3}\leq t\leq 3)\).
Ta có: \(P=t+\dfrac{9-t^2}{4}+\dfrac{1}{t^2}=\dfrac{4t^3+9t^2-t^4+4}{4t^2}\).
\(\Rightarrow P-\dfrac{28}{9}=\dfrac{\left(3-t\right)\left(9t^3-9t^2+4t+12\right)}{36}\).
Do \(\sqrt{3}\le t\le3\) nên \(3-t\geq 0\); \(9t^3-9t^2+4t+12>4t+12>0\).
Nên \(P\ge\dfrac{28}{9}\).
Đẳng thức xảy ra khi t = 3, tức (a, b, c) = (0; 0; 3) và các hoán vị.
Vậy...
\(A=\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\left(ab+\dfrac{16}{ab}\right)+\dfrac{17}{2ab}\)
\(A\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{16ab}{ab}}+\dfrac{17}{\dfrac{2\left(a+b\right)^2}{4}}\)
\(A\ge\dfrac{4}{\left(a+b\right)^2}+8+\dfrac{34}{\left(a+b\right)^2}\ge\dfrac{4}{4^2}+8+\dfrac{34}{4^2}=\dfrac{83}{8}\)
Dấu "=" xảy ra khi \(a=b=2\)
\(P\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2\)
\(P\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{8}{\left(a+b\right)^2}=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2\left(a+b\right)^2}+\dfrac{15}{2\left(a+b\right)^2}\)
\(P\ge\dfrac{1}{2}.2\sqrt{\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}}+\dfrac{15}{2.1^2}=\dfrac{17}{2}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
Lời giải:
$a^2+b^2=a+b$
$\Rightarrow (a+b)^2-(a+b)=2ab\geq 0$
$\Rightarrow a+b\geq 1$. Do đó:
$S=\frac{a}{a+1}+\frac{b}{b+1}=\frac{2ab+a+b}{ab+a+b+1}\geq \frac{\frac{ab}{2}+\frac{a+b+1}{2}}{ab+a+b+1}=\frac{1}{2}$
Vậy GTNN của $S$ là $\frac{1}{2}$. Dấu "=" xảy ra khi $(a,b)=(0,1)$ và hoán vị.