Cho biết số đo 3 góc của 1 tam giác tỉ lệ với 4; 5; 3. Tính số đo 3 góc của tam giác đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cả 2 phần cậu đều áp dụng tính chất dãy tỉ số bằng nhau đi
dễ mà
`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`
`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`
`-> x+y+z=180`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`
`-> x/2=y/3=z/4=20`
`->x=20*2=40, y=20*3=60, z=20*4=80`
Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`
a:
Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)
a/2=b/3=c/4
b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=>a=40; b=60; c=80
Gọi 3 góc của tam giác đó lần lượt là a; b; c ( độ ) ( a; b; c > 0 )
Vì 3 góc của tam giác đó tỷ lệ với 3; 4; 5
=> \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Vì tổng 3 góc trong 1 tam giác bằng 180 độ ( định lý tổng 3 góc trong tam giác )
=> a + b + c = 180 ( độ
Áp dụng tính chất dãy tỷ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{180}{12}=15\)
\(\Rightarrow\frac{a}{3}=15\Rightarrow a=45\)
\(\Rightarrow\frac{b}{4}=15\Rightarrow b=60\)
\(\Rightarrow\frac{c}{5}=15\Rightarrow b=75\)
Vậy số đo 3 góc của tam giác đó lần lượt là 45 độ; 60 độ; 75 độ
Câu hỏi của Nguyen Quang Huy - Toán lớp 7 - Học toán với OnlineMath
gọi số đo 3 góc là a,b,c(a,b,c>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{15}=\dfrac{b}{6}=\dfrac{c}{9}=\dfrac{a+b+c}{15+6+9}=\dfrac{180^o}{30}=6^o\)
\(\dfrac{a}{15}=6^o\Rightarrow a=90^o\\ \dfrac{b}{6}=6^o\Rightarrow b=36^o\\ \dfrac{c}{9}=6^o\Rightarrow c=54^o\)
Gọi 3 góc của tam giác là a,b,c(độ;a>b>c>0)
Áp dụng tc dtsbn:
\(\dfrac{a}{15}=\dfrac{b}{9}=\dfrac{c}{6}=\dfrac{a+b+c}{15+6+9}=\dfrac{180}{30}=6\\ \Leftrightarrow\left\{{}\begin{matrix}a=90\\b=54\\c=36\end{matrix}\right.\)
Vậy ...
gọi số đo 3 góc của tam giác là :A,B,C
theo bài ra ta có:
A:B:C=2:3:4
hay \(\frac{A}{2}=\frac{B}{3}=\frac{C}{4}\) và A+B+C=180độ(vì tổng 3 góc của tam giác =180độ)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{A}{2}=\frac{B}{3}=\frac{C}{4}=\frac{A+B+C}{2+3+4}=\frac{180^0}{9}=20\)
--> A=\(20.2=40^0\)
B=\(20.3=60^0\)
C=\(20.4=80^0\)
vậy số đo 3 góc của tam gics lần lượt : \(40^0,60^0,80^0\)
gọi số đo 3 góc là a,b,c ( a,b,c > 0 )
ta có a : b : c = 2 : 3 : 4 và a + b+ c = 180
=> a /2 = b/3= c/4 và a + b + c =180
=> Ap dụng dãy tỉ số = nhau : a/2 = b/3 = c/4 = ( a + b + c ) / ( 2 + 3 + 4 ) = 180 /9 = 20
=> a/2 = 20 => a = 40
=> b/3=20 => b = 60
=> c/4 = 20 => c= 80
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{3}=\dfrac{a+b+c}{4+5+3}=\dfrac{180}{12}=15\)
Do đó: a=60; b=75; c=45