Chứng minh góc ABD = góc EBD
Cho AABC vuông tại A ( AB < AC ). Tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điem E sao cho BE= BA.
a) Chứng minh góc ABD = góc EBD
b) Chứng minh BD vuông góc AE
c) Trên tia đối của AB lấy điểm K sao cho BK= BC. Chứng minh E.D.K thăng hàng
a: \(\widehat{ABD}=\widehat{EBD}=\dfrac{\widehat{EBA}}{2}\)(vì BD là tia phân giác của góc EBA)
b: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
hay D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
nên B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD⊥AE
c: Xét ΔCED vuông tại E và ΔKAD vuông tại A có
ED=AD
CE=KA
Do đó: ΔCED=ΔKAD
Suy ra: \(\widehat{CDE}=\widehat{KDA}\)
mà \(\widehat{CDE}+\widehat{EDA}=180^0\)
nên \(\widehat{EDA}+\widehat{KDA}=180^0\)
=>E,D,K thẳng hàng
chỉ mềnh vẽ hình với