K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

10 tháng 7 2021

 

Áp dụng định lý Pi-ta-go vào tam giác vuông ABH vuông tại H ta có: 

    AB2= BH2 + AH2  

<=> 152= 122+ AH2

<=> AH2= 152- 122= 225- 144= 81

<=> AH= 9 (cm)

 Tương tự ta có : Áp dụng định lý Pi-ta-go vào tam giác vuông ACH vuông tại H .             

        AC2= AH2+ HC2

<=> 412= 92+ HC2

<=> HC2= 412- 92= 1681- 81= 1600

<=>HC= 40 (cm)

 

 

 

 

4 tháng 3 2019

4:

a: Gọi độ dài cạnh góc vuông cần tìm là x

Theo đề, ta có: x^2+x^2=a^2

=>2x^2=a^2

=>x^2=a^2/2=2a^2/4

=>\(x=\dfrac{a\sqrt{2}}{2}\)

b:

Độ dài cạnh là;

\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)

5: 

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>13^2=12^2+HB^2

=>HB=5cm

BC=5+16=21cm

ΔAHC vuông tại H

=>AH^2+HC^2=AC^2

=>AC^2=16^2+12^2=400

=>AC=20(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

\(\Leftrightarrow AC=\sqrt{400}=20cm\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=13^2-12^2=25\)

\(\Leftrightarrow BH=\sqrt{25}=5cm\)

Ta có: BH+CH=BC(H nằm giữa B và C)

\(\Leftrightarrow BC=5+16=21\left(cm\right)\)

Vậy: AB=20cm; BC=21cm

26 tháng 2 2021

thank you so muchhhh

 

26 tháng 5 2021

Dài lắm bạn tham khảo.undefinedundefined

Ta có: ΔABC đều(gt)mà AH là đường cao ứng với cạnh BC(gt)

nên AH là đường trung tuyến ứng với cạnh BC(Định lí tam giác đều)

hay H là trung điểm của BC

\(\Leftrightarrow BH=\dfrac{BC}{2}=\dfrac{3}{2}=1.5\left(cm\right)\)

Xét ΔABH vuông tại H có 

\(\widehat{ABH}+\widehat{BAH}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{BAH}=90^0-60^0\)

hay \(\widehat{BAH}=30^0\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AH^2+BH^2=AB^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=3^2-1.5^2=6.75\)

hay \(AH=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

Vậy: \(AH=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)